CiteScore: 5.0     h-index: 22

Document Type : Original Research Article

Authors

Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract

In this work, cyclic voltammetry studies for Cu (II) ion were carried out to show it`s redox behaviours in 0.1 M KBr and 4-Fluoro benzoic acid. The aim of this research study was to estimate the copper chloride and 4-fluorobenzoic acid in KBr electrolyte. The voltammetric studies involve reversible scans at various concentration of both CuCl2 and 4-Fluoro benzoic acid (FBA). Based on the measured voltammograms the different thermodynamic parameters such as the Gibbs thermodynamic energies and stability constants for the interaction CuCl2 with 4-Fluoro benzoic acid (FBA) are discussed by the formation of strong electrostatic complexes. Different Scan rates were also considered to illustrate the mechanism of the redox reactions in the solutions. The importance of this work was to explain the uses of 4-flurobenzoic acid (FBA) as a ligand.  Estimation of the different thermodynamic parameters for the interaction of CuCl2 with 4-flurobenzoic acid in 0.1 M KBr cyclic voltammetry was done. Application of the interaction of CuCl2 with 4-fluro benzoic acid for evaluation of both different cupprous, cupric and 4-flurobenzoic acid concentrations.

Graphical Abstract

Cyclic Voltammetry Studies for the Interaction of CuCl2 with 4-Fluoro Benzoic Acid (FBA) in KBr Aqueous Solutions

Keywords

[1] S. Nagalingam, G. B. Teh, Scientif. study Res., 2014, 15, 1–7.
[2] J.L. Anderson, L. Shain, Anal. Chem., 1976, 48, 1274–1282.
[3] J. Becker, D. Brockway, K.S. Murray, P. Newman, T. Toftlund, Inorg. Chem., 1982, 21, 1791–1798.
[4] R.N. Patel, Spectrochim. Acta, A, 2003, 59, 713–721.
[5] I. Ibarrolla, M.C. Arilla, M.D.Herrero, M.I. Esteban, A. Martinez, J.A. Asturias, J. Invest. Allergol. Clin. Immunol., 2008 , 18, 78–83.
[6] E.C. Ukpong, Int. J. Eng. Sci., 2013, 2, 1–13.
[7] A.K. Boal, A.C. Rosonzweig, Chem. Rev., 2009, 109, 4760–4779.
[8] B.E. Kim, T. Nevitt, D.J. Thiele, Nat. Chem. Biol., 2008, 4, 176–185.
[9] S. Lutsenko, Curr. Opin. Chem. Biol., 2010, 14, 211–217.
[10] Y. Nose, B.E. Kim, D.J. Thiele, Cell. Metab., 2006, 4, 235-244.
[11] S. Punig, N.U.R. Andres-Colas, A.N.T. Garacia-Molina, L. Penarrubia, Plant Cell Environ., 2007, 30, 271–290.
[12] C. White, J. Lee, T. Kambe, K. Fritsche, M.J. Petris, J. Biol. Chem., 2009, 284, 33949–33956.
[13] M. Eldefrawy, E.A. Gomaa, S. Salem, F. Abdel Razik, Prog. Chem. Biochem. Res., 2018, 1, 11–18.
[14] A. Taheri, R. Faramarzi, M. Roushani, Anal. Bioanal. Electrochem., 2007, 7, 666–683.
[15] G. Vinodhkumar, R. Ramya, M. Vimalan, I. Potheher, A. Cyrac Peter, Prog. Chem. Biochem. Res., 2018, 1, 40–49.
[16] Rezayati-Zad Z., Davarani S.S.H., Faheri A., Bide Y., Biosens. Bioelectron., 2016, 86, 616–622.
[17] S. Mohammadi, A. Taheri, Rezyati-Zad Z., Prog. Chem. Biochem. Res., 2018, 1, 1–10.
[18] R.S. Nichiolson, I. Shain, Anal. Chem., 196436, 706–723.
[19] T.S. Anirudhan, F. Shainy, J.R. Deepa, Chem. Ecol., 2019, 35, 235–255.
[20] A.M. El-Askalany, A.M. Abou El-Magd, Chem. Pharm. Bull., 1995,43, 1791–1792.
[21] E.A. Gomaa, M.A. Morsi, A.E. Negm, Y.A. Sherif, Int. J. Nano Dimens., 2017,8, 89–96.
[22] C.P. Kelly, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B., 2006, 110, 16066–16081.
[23] M.A. Morsi, E.A. Gomaa, A.S. Nageb, Asian J. Nanosci. Mater., 2018, 1, 282–293
[24] S. Magdassi, M. Grouchko, A. Kamyshny, Materials, 2010, 3, 4626–4638.
[25] A.K. Chatterjee, R. Chakraborty, T. Basu, Nanotechnology, 2014, 25, 135101.
[26] O. Gutten, L. Rulíšek, Inorg. Chem., 2013, 52, 10347–10355.
[27] J.I. Kim, A. Cecal, H.J. Born, E.A. Gomaa, Z. Phys. Chem., 1978, 110, 209–227
[28] J.I. Kim, E.A. Gomaa, Bull. Soc. Chim. Belg., 1981, 90, 391–407
[29] F.I. El-Dossoki, E.A.Gomaa, O.K. Hamza, J. Chem. Eng. Data, 2019, 64, 4482–4492
[30] S. Eloul, R.G. Compton, J. Phys. Chem. C, 2015, 119, 27540–27549.
[31] K.M. Ibrahim, E.A. Gomaa, R.R. Zaky, M.N. Abdel El-Hady, Am. J. Chem., 2012, 2, 23–26.
[32] E.A. Gomaa, Int. J. Mater. Chem., 2012, 2, 16–18.
[33] E.A. Gomaa, Phys. Chem. Liq., 2012, 50, 279–283.
[34] E.A. Gomaa, Am. J. Environ. Eng., 2012, 2, 54–57.
[35] M.N. Abd Elhady, E.A. Gomaa, A.G, Al-Harazie, J. Mol. Liq., 2019, 276, 970–985.
[36] E.A. Gomaa, A. Negm, R.M. Abu Qarn, Iran. J. Chem. Eng., 2017, 14, 90–99.
[37] E.A. Gomaa, Int. J. Theor. Math. Phys., 2013, 3, 151–154.
[38] E.A. Gomaa, Indian J. Tech., 1986, 24, 725–726.
[39] E.A. Gomaa, G.M. Beghit, Asian J. Chem., 1990, 2, 444–450.