CiteScore: 5.0     h-index: 22

Document Type : Original Research Article

Authors

1 Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt

2 Senior Researcher Chemist, Greater Cairo Water Company, Cairo, Egypt

3 Research Laboratory, Cairo Oil Refining Company, Mostorod, Kaliobia, Egypt

4 Green Chemistry Department, National Research Centre, 33 El Bohouth St. (former EL Tahrir St.)-Dokki-Giza-Egypt-P.O.12622

5 Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sinai University, North Sinai, Egypt

6 Drugs Expert in the Central Administration of Chemical Laboratories Forensic Medicine, Cairo, Egypt

Abstract

A tridentate Schiff base ligand (E)-1-(2-hydroxy-3-methoxybenzylidene)-3-phenylurea derived from o-vanillin and phenyl urea in 1:1 molar ratio. Also, the metal complexes of Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Zr (IV) were synthesized using the microwave-assisted irradiation and conventional methods. The ligand and its complexes 1-6 were characterized using the elemental analysis, FT-IR, UV-vis, 1HNMR, mass spectroscopy as well as thermo-gravimetric analysis (TGA). The geometry structures of the complexes were confirmed using electronic spectra, electron spin resonance (ESR) and magnetic moment. Study of the thermal dehydration and decomposition of the Co (II), Ni (II), and Zn (II) complexes kinetically using the integral method applying the Coats–Redfern and Horowitz Metzger equation. The ligand and its metal complexes were screened for the antimicrobial activity against the gram-positive, gram-negative bacteria and fungi also, the cytotoxic activity was evaluated against two cell lines; human colon carcinoma (HCT-116) and breast carcinoma cells (MCF-7).

Graphical Abstract

Conventional and Microwave-Assisted Synthesis, Antimicrobial and Antitumor Studies of Tridentate Schiff Base Derived from O-vanillin and Phenyl Urea and its Complexes

Keywords

[1] R.F. Boyd, General Microbiology. Times Mirror, Mosby College Publishing, St. Louis, Mo, 1988.‏
[2] R.M. Amin, N.S. Abdel-Kader, A.L. El-Ansary, J. Spectrochim. Acta A, Mol. Biomol. Spectroscopy, 2012, 95, 517–525.
[3] M. Neelakandan, M. Esakkiammal, S. Mariappan, J. Dharmaraja, T. Jayakumar, Indian J. Pharm. Sci., 2010, 72, 216–222.
[4] M.B. Fugu, N.P. Ndahi, B.B. Paul, A.N. Mustapha, J. Chem. Pharm. Res., 2013, 5, 22–28.
[5] W.J. Song, J.P. Cheng, D.H. Jiang, L. Guo, M. F. Cai, H. B. Yang, Q.Y. Lin, Spectrochim. Acta A, 2014, 121, 70–76.
[6] C. Liang, J. Xia, D. Lei, X. Li, Q. Yao, J. Gao, Eur. J. Med. Chem., 2013, 4, 742–750.
[7] A. Hassan, B.H. Heakal, A. Younis, M.A.E.M. Bedair, M.M.A. Mohamed, Egypt. J. Chem., 2019, 62, 1603–1624.‏
[8] O.A. Wahba, A.M. Hassan, A.M. Naser, A.M. Hanafi, Pigment. Resin Technol., 2017, 46, 286–295.‏
[9] A.M. Hassan, O.A.G. Wahba, A.M. Naser, A.M. Eldin, J. Coat. Technol. Res., 2016, 13, 517–525.‏
[10] M. Gulcan, M. Sonmez, Phosph. Sulfur Silic. Relat. Elem., 2011, 186, 1962–1971.
[11] G. Mazzanti, L. Battinelli, C. Pompeo, A.M. Serrilli, R. Rossi, I. Sauzullo, F. Mengoni, V. Vullo, Nat. prod. Res., 2008, 22, 1433–1440.
[12] C. Queffelec, F. Bailly, G. Mbemba, J.F. Mouscadet, S. Hayes, Z. Debyser, M. Witvrouw, P. Cotelle, Bioorg. Med. Chem. Lett., 2008, 18, 4736–4740.
[13] K. Lirdprapamongkol, J.P. Kramb, T. Suthiphongchai, R. Surarit, C. Srisomsap, G. Dannhardt, J. Svasti, J. Agric. Food Chem., 2009, 57, 3055–3063.
[14] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Cancer Metastasis Rev., 2010, 29, 405.
[15] T.D. Xuan, T. Toyama, M. Fukuta, T.D. Khanh, S. Tawata, J. Agr. Food Chem., 2009, 57, 9448–9453.
[16] S. Tabassum, S. Amir, F. Arjmand, C. Pettinari, F. Marchetti, N. Masciocchi, G. Lupidi, R. Pettinari, Eur. J. Med. Chem., 2013, 60, 216–232.
[17] S. Muche, K. Harms, A. Biernasiuk, A. Malm, Ł. Popiołek, A. Hordyjewska, M. Hołyńska, Polyhedron, 2018, 151, 465–477.
[18] V.A. Joseph, J.J. Georrge, J.H. Pandya, R.N. Jadeja, J. Theor. Comput. Sci., 2015, 2, 2.
[19] L. Cai, Curr. Protoc. Essent. Lab. Tech., 2014, 8, 6–3.
[20] A.I. Vogel, J. Bassett, Vogel’s Textbook of Quantitative Inorganic Analysis, Longman, 4th Ed.., London, 1989.
[21] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, 2004.
[22] A. Brisdon, Kazuo Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th Ed., Wiley, 2009, p 424.
[23] R.M. Silverstein, G.C. Bassler, J. Chem. Educ., 1962, 39, 546.‏
[24] B. Zghari, P. Doumenq, A. Romane, A. Boukir, J. Mater. Environ. Sci., 2017, 8, 4496–4509.
[25] R.J. Abraham, M. Mobli, Magnetic Resonance Chem., 2007, 45, 865–877.
[26] B.V. Tawade, J.K. Salunke, P.S. Sane, P.P Wadgaonkar., J. Polym. Res., 2014, 21, 617.
[27] E.Y. Song, N. Kaur, M.Y. Park, Y. Jin, K. Lee, G. Kim, K.Y. Lee, J.S. Yang, J.H. Shin, K.Y. Nam, K.T. No, Eur. J. Med. Chem., 2008, 43, 1519–1524
[28] I. Kaya, A. Bilici, M. Gül, Polym. Adv. Technol., 2008, 19, 1154–1163.
[29] N. Sam, M.A. Affan, M.A. Salam, F.B. Ahmad, M.R. Asaruddin, Open J. Inorg. Chem., 2012, 2, 22–27.
[30] G.S. Devi, A.K. Muthu, D.S. Kumar, S. Rekha, R. Indhumathi, R. Nandhini, Int. J. Drug Develop. Res., 2013, 1, 105–109.
[31] T. Mosmann, J. Immunol. Methods, 1983, 65, 55–63.
[32] S.M. Gomha, S.M. Riyadh, E.A. Mahmmoud, M.M. Elaasser, Heterocycles, 2015, 91, 1227–1243.
[33] K. Nakamoto, Infrared spectra of inorganic and coordination compounds, Wiley Interscience: New York, 1970.‏
[34] Finney. D. J. Probit Analysis: 3rd Ed, Cambridge University Press, 1971.
[35] X. Li, C. Gao, Y. Wu, C.Y. Cheng, W. Xia, Z. Zhiping, J. Mater. Chem. B, 2015, 3, 1556–1564.
[36] G. Rokicki, P. Rakoczy, P. Parzuchowski, M. Sobiecki, J. Green Chem., 2005, 7, 529–539.
[37] H. Zhang, X. Ma, C. Lin, B. Zhu, J. RSC Adv., 2014, 4, 33713–33719.
[38] P. Khakhlary, J.B. Baruah, J. RSC Adv., 2014, 4, 64643–64648.
[39] A. Mohammed, N. Khaleel, A.J. Abdul-Ghani Synthesis and Characterization of New Schiff Bases and Amides Derived from N(1) Substituted Isatin with 2- Aminobenzothiazole, 2-Aminopyrimidine and Dithiooxamide and Some of Their Metal Complexes, PhD Thesis, University of Baghdad, 2008.
[40] P.M. Dias, L. Kinouti, V.R. Constantino, A. M. Ferreira, M.B. Gonçalves, R.R.D. Nascimento, R.C. Frem, Química Nova2010, 33, 2135–2142.
[41] B.S. Prakash, I.S. Raj, A.G. Raj, IOSR J. Eng., 2017, 7, 26–36.
[42] M.L. Low, Synthesis, characterization and bioactivites of dithiocarbazate Schiff base ligands and their metal complexes, Doctoral dissertation, Université Pierre et Marie Curie-Paris VI, 2014.
[43] A.Z. El‐Sonbati, M.A. Diab, S.M. Morgan, M.A. El‐Mogazy, Appl. Org. Chem., 2018, 32, e4530.
[44] A.W. Coats, J.P. Redfern, Nature, 1964, 201, 68–69.
[45] H.H. Horowitz, G. Metzger, Anal. Chem., 1963, 35, 10, 1464–1468.
[46] B. Sivasankar, J. Ther. Anal. Calorim., 2006, 86, 385–392.
[47] Tweedy, B.G. and N. Turner, Contrib. Boyce Thompson Inst. 1966, 23.
[48] T. Samanta, G. Roymahapatra, W.F Porto, S. Seth, S. Ghorai, S. Saha, J. Sengupta, O.L. Franco, J. Dinda, S.M.Mandal, PloS one2013, 8, e58346.
[49] J.L. Qin, W.Y. Shen, Z.F. Chen, L.F. Zhao, Q.P. Qin, Y.C. Yu, H. Liang, Sci. Rep., 2017, 7, 46056.
[50] A. Skladanowski, P. Bozko, M.  Sabisz, Chem. Rev., 2009, 109, 2951–2973.
[51] J.D. Hsu, S.H. Kao, T.T. Ou, Y.J. Chen, Y.J. Li, C.J. Wang, J. Agric. Food Chem., 2011, 59, 1996–2003.
[52] K. Gałczyńska, K. Ciepluch, Ł., Madej, K. Kurdziel, B. Maciejewska, Z. Drulis-Kawa, A. Węgierek-Ciuk, A. Lankoff, M. Arabski, Sci. Rep., 2019, 9, 9777.