CiteScore: 5.0     h-index: 22

Document Type : Original Research Article

Authors

1 Department of Physics, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh

2 Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

3 Department of Electrical and Electronic Engineering, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh

Abstract

In this work, the electronic band structures, total density of state, partial density of state, and optical properties were investigated using the first principle method for SnWO4 via generalized gradient approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0). The estimated band gap was found to be 0.557 eV which is supported for good semiconductor. The density of states and partial density of the states were simulated for evaluating the nature of 5s, 4d 5p for Sn, 6s, 4f, 5d for W and 2s, 2p for O atom for SnWO4. The optical properties for instance, conductivity, dielectric function, and the loss function were calculated. The main goal of this research study was to determine the Fe doping activity on the electronics structure and optical properties by 8%, and the band gap was recorded in 0.0 eV, showing as a superconductor. Regarding the optical properties, the loss function was decreased after doping.

Graphical Abstract

Theoretical Investigation of Doping Effect of Fe for SnWO4 in Electronic Structure and Optical Properties: DFT Based First Principle Study

Keywords

[1] T.C. McGill, Journal of Vacuum Science and Technology 1974, 11, 935–942.
[2] C.R. Crowell, S.M. Sze, Solid-state Electron., 1966, 9, 1035–1048.
[3] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, Vol. 28, John Wiley & Sons, 2009,
[4] Y.H. Li, W. Aron, S. Chen, W.J. Yin, J. Li, J.L.F. Da Silva, X.G. Gong, S.H. Wei, J-H Yang,  Appl. Phys. Lett., 2009, 94, 212109.
[5] M.J. Islam, A. Kumer, SN Appl. Sci. 2020, 2, 251.
[6] S.A. Dayeh, J. Wang, N. Li, J.Y. Huang, A.V. Gin, S.T. Picraux, Nano lett., 2011, 11, 4200–4206.
[7] C. Luke, M.E. Campbell, Anal. Chem., 1953, 25, 1588–1593.
[8] V.T. Agekyan, Phys. Status soli. A, 1977, 43, 11–42.
[9] M. Dan, M. Cheng, H. Gao, H Zheng, C. Feng, J. Nanosci. Nanotechnol., 2014, 14, 2395–2399.
[10] U. Chakma, A. Kumer, K.B. Chakma, M.T. Islam, D. Howlader, R.M.K. Mohamed, Eurasian Chem. Commun., 2020, 2, 573–580.
[11] P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A.  Agostiano, D. Laub, J. Am. Chem. Soc., 2004, 126, 3868–3879.
[12] K.M. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá, L. Čapek, A. Hospodková, O. Šolcová, Appl. Catal. B: Environ., 2010, 96, 239–244.
[13] A. Meng, X. Wang, X. Li, Z. Li, Ceram. Internat., 2014, 40, 9303–9309.
[14] K.B. Chakma, A. Kumer, U. Chakma, D. Howlader, M.T. Islam, Int. J. New Chem., 2020, In Press.
[15] U. Chakma, A. Kumer, K.B. Chakma, M.T. Islam, D. Howlader, Adv. J. Chem. A, 2020, In Press.
[16] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. lett., 1996, 77, 3865.
[17] G.F. Bertsch, J.I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B, 2000, 62, 7998.