Document Type : Original Research Article


1 Department of Environmental Science, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal

2 Department of Botany, Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal

3 Department of Mathematics and Statistics, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal

4 Department of Zoology, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal

5 Department of Chemistry, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal

6 Central Department of Geology, Tribhuvan University, Kirtipur, Nepal

7 Department of Environmental Science, Tri-chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal


In this work, a total of thirty four (N=34) street dust samples were collected from four different land use zones viz., commercial, heavy traffic, residential and control (undisturbed) areas of Kathmandu, Nepal. The dust samples were analyzed for four different heavy metals (Cd, Cr, Ni, and Pb) by using the flame atomic absorption spectrophotometer (FAAS). The total organic carbon (TOC) and pH of the samples were also measured. The selected land use zones revealed their relative order based on the concentration of the elements as heavy traffic>commercial>residential>control. The average concentration of the Cd, Cr, Ni, and Pb were found to be 0.69, 77.4, 68.9, and 63.9 mg/kg (dry basis), respectively. The results of the present study were also compared against the heavy metals concentration in street dust with previous studies across the world. High amount of Ni (122.2 mg/kg), Cr (94.8 mg/kg), Pb (74.4 mg/kg), and Cd (0.84 mg/kg) was observed in heavy traffic zone compared to other land use zones. Results revealed that the street dust from the commercial and residential zones contained high concentration of Cr whereas the heavy traffic zone was mainly affected by the Ni. In addition, the dust samples from all land use zones showed alkaline nature and contained variable amount of TOC. The inter-parameter relationship expressed by Pearson’s correlation coefficient indicated their common sources of emission as well as similar fate and characteristics. A single pollution index such as contamination factor (CF) and geo-accumulation index (Igeo) revealed different classes of metal contamination in street dust of Kathmandu. The average level of metal contamination in street dust of Kathmandu was found to be 3.94, 2.64, 1.97, and 1.94 for Ni, Cr, Cd, and Pb, respectively. Health risk assessment modeling study of the HMs in street dust indicated no non-carcinogenic risks for the receptors; however, ingestion was found to be the most potential pathway for the HMs exposure and toddlers as the most likely to be a vulnerable group. 

Graphical Abstract

Pollution Characteristics and Human Health Risks to Heavy Metals Exposure in Street Dust of Kathmandu, Nepal


[1] J.N. Brown, B.M. Peake, Sci. Total Environ., 2006, 359, 145–155.

[2] A.N.M. Latif, I.A. Saleh, J. Am. Sci., 2012,8, 379–389.

[3] E. Padoan, C.  Romè, F. Ajmone-Marsan, Sci. Total Environ., 2017, 601, 89–98.

[4] H. Pan, X. Lu, K. Lei, Sci. Total Environ., 2017, 609, 1361–1369.

[5] M. Stone, J. Marsalek, Water Air Soil Pollut., 1996,87, 149–169.

[6] J.F. Farmer, T.D.B. Lyon, Sci. Total Environ., 1997, 8, 89–93.

[7] A.D.K. Banerjee, Environ. Pollut., 2003,123, 95–105.

[8] C. Men, R. Liu, Q. Wang, L. Guo, Z. Shen, Sci. Total Environ., 2018, 637, 844–854.

[9] P.R. Beckwith, J.B. Ellis, D.M. Revitt, F. Oldfield, Phys. Earth Planet. Int., 1986, 42, 67–75.

[10] J.E. Fergusson, N. Kim, Sci. Total Environ., 1991, 100, 125–150.

[11] M.L. Kreider, J.M. Panko, B.L. McAtee, L.I. Sweet, B.L. Finley, Sci. Total. Environ., 2010, 408, 652–659.

[12] F. Amato, M. Pandolfi, T. Moreno, M. Furger, J. Pey, A. Alastuey, N. Bukowiecki, A. S. H. Prevot, U. Baltensperger, X. Querol Atmos. Environ., 2011, 45, 6777–6787.

[13] M. Zhang, H. Wang, J. Environ. Sci., 2009,21, 625–631.

[14] F. Amato, X. Querol, C. Johansson, C. Nagl, A. Alastuey, Sci. Total Environ., 2010, 408, 3070–3084.

[15] C. Gunawardana, A. Goonetilleke, P. Egodawatta, L. Dawes, S. Kokot, Chemosphere, 2012, 87, 163–170.

[16] USEPA. Supplemental guidance for developing soil screening levels for superfund sites. Washington: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 2001.

[17] F. Xu, G. Giovanoulis, W.S.  Van, J.A. Padilla-Sanchez, E. Papadopoulou, J. Magnér, L.S. Haug, A. Covaci, Environ. Sci. Technol., 2017, 50, 7752–7760.

[18] T.K. Rout, R.E. Masto, L.C. Ram, J. George, P.K. Padhy, Environ. Geochem. Health2012,35, 347–356.

[19] M.U. Ali, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, M.A.M. Munir, B. Fu, Chemosphere, 2017, 181, 111–121.

[20] M. Gope, R.E. Masto, J. George, R.R. Hoque, S. Balachandran, Ecotoxicol. Environ. Saf., 2017,138, 231–241.

[21] F. Fujiwara, R.J. Rebagliati, L. Dawidowski, D. Go´mez, G. Polla, V. Pereyra, P. Smichowski, Atmos. Environ., 2011, 45, 1497–1505.

[22] A. Bourliva, C. Christophoridis, L. Papadopoulou, K. Giouri, A. Papadopoulos, E. Mitsika, K. Fytianos, Environ. Geochem. Health, 2017,39, 611–634.

[23] W. Zgłobicki, M. Telecka, S. Skupiński, A. Pasierbińska, M. Kozieł, Environ. Earth Sci., 2018, 77, 774.

[24] A. Christoforidis, N. Stamatis, Geoderma, 2009, 151, 257–263.

[25] Z. Tang, M. Chai, J. Cheng, J. Jin, Y. Yang, Z. Nie, Q. Huang, Y. Li, Ecotoxicol. Environ. Saf., 2017, 138, 83–91.

[26] J.O. Olowoyo, E. Van Heerden, J. Fischer, Sust. Environ. Res.2013,23, 93–99.

[27] Y. Nazzal, H. Ghrefat, M.A. Rosen, Environ. Earth Sci., 201471, 1409–1419.

[28] T.K. Rout, R.E. Masto, P.K. Padhy, L.C. Ram, J. George, G. Joshi, Environ. Earth Sci., 201573, 347–359.

[29] G. Sun, Z. Li, T. Liu, J. Chen, T. Wu, X. Feng, Int. J. Environ. Res. Pub. Health, 2017, 14, 261.

[30] C.S. Tamrakar, P.R. Shakya, Pak. J. Ana. Environ. Chem., 201112, 32–41.

[31] P.R. Shakya, A.R. Pradhananga, Res. J. Chem. Sci., 2013,3,18–25.

[32] P.R. Shakya, N. Karmacharya, S.B.S. Kansakar, R.K. Shakya, K.K. Wagle, M. Shrestha, Res. J. Chem. Sci., 2014, 4, 82–92.

[33] CBS/NPCS. Nepal Population and Housing Census 2011 (National Report), Central Bureau of Statistics, National Planning Commission Secretarial, Government of Nepal, 2011.

[34] A. Walkley, I.A. Black, Soil Sci., 201137, 29–38.

[35] APHA, AWWA & WPCF. Standard Methods for Examination of Water and Waste Water, 9th Edition, American Public Health Association, Washington DC, 1995.

[36] B. Wei, F. Jiang, X. Li, S. Mu, Environ. Monit. Assess., 2010,160, 33–45.

[37] J.Q. Yuen, P.H. Olin, H.S. Lim, S.G. Benner, R.A. Sutherland, A.D. Ziegler, J. Environ. Mgt., 2012, 101, 151–163.

[38] L. Hakanson, Water Res., 1980,14, 975–1001.

[39] G. Muller, Geojournal1969, 2, 108-118.

[40] USEPA. Soil screening guidance: User’s guide. Washington, DC: US Environmental Protection Agency, 1996.

[41] OME. Soil investigation and human health risk assessment for the Rodney street community. Port Colborne, Ontario: OMN, Ontario Ministry of the Environment, Canada, 2002.

[42] USEPA. Integrated Risk Information System (IRIS). U.S. Environmental Protection Agency, 2011.

[43] USEPA. United States Environmental Protection Agency. USEPA Regional Screening Level Table, 2010.

[44] JECFA. Joint FAO/WHO food standards programme. Codex committee on contaminants in foods. 5th Session. The Hague, the Netherlands, 2011.

[45] Y. Faiz, M. Tufail, M.T. Javed, M.M. Chaudhry, Microchem. J., 200992, 186–192.

[46] R. Li, G. Cai, J. Wang, W., Ouyang, H. Cheng, C. Lin, J. Soils Sediments, 2014, 14, 1806–1817.

[47] N. Mun’im Mohd Han, M.T. Latif, M. Othman, D. Dominick, N. Mohamad, H. Juahir, N.M. Tahir, Environ. Earth Sci., 2014,72, 849–859.

[48] N. Soltani, B. Keshavarzi, F. Moore, T. Tavakol, A.R. Lahijanzadeh, N. Jaafarzadeh, M. Kermani, Sci. Total Environ., 2015,505, 712–723.

[49] U. Divrikli, M. Soylak, L. Elci, M. Dogan, J. Trace Microprobe Tech., 2003, 21, 713–720.

[50] M.S. Akhter, I.M. Madany, Water Air Soil Pollut., 1993,66, 111–119.

[51] S.M. Al-Shayeb, Asian J. Chem., 2001, 13, 407–423.

[52] A. Ghani, Egypt. Acad. J. Bio. Sci., 2011, 2, 9–15.

[53] S. Hidayah, A.M. Amran, Malaysian J. Anal. Sci., 2008, 12, 291–301.

[54] F. Ahmed, H. Ishiga, Atmos. Environ.2006,40, 3835–3844.

[55] M.T. Puth, M. Neuhäuser, G.D. Ruxton, Animal Behav., 2014, 93, 183–189.

[56] D.H. Yaalon, Catena, 1997, 28, 157–169.

[57] M.B. Arain, T.G. Kazi, M.K. Jamali, H.I. Afridi, N. Jalbani, R.A. Sarfraz, J.A. Baig, G.A. Kandhro, M.A. Memon, J. Hazard. Mater.2008,160, 235–239.

[58] R.A. Sutherland, C.A. Tolosa, Environ. Pollut., 2000,110, 483–495.

[59] J.A. Acosta, A. Faz, K. Kalbitz, B. Jansen, S. Martínez-Martínez, J. Environ. Monit.2011,13, 3087–3096.

[60] M. Barbieri, J. Geol. Geophys.2016,5, 1–4.

[61] Y. Du, B. Gao, H. Zhou, X. Ju, H. Hao, S. Yin, Procedia Environ. Sci., 201318, 299–309.

[62] M.S. Atiemo, G.F. Ofosu, H. Kuranchie-Mensah, A.O. Tutu, N.D. Palm, S.A. Blankson, Res. J. Environ. Earth Sci.2011,3, 473–480.

[63] T. Moghtaderi, S. Mahmoudi, A. Shakeri, M.H. Masihabadi, Human Eco. Risk Assess.: An Int. J.2018, 24, 1058–1073.

[64] H.H. Li, L.J. Chen, L. Yu, Z.B. Guo, C.Q. Shan, J.Q. Lin, Y.G. Gu, Z.B. Yang, Y.X. Yang, J.R. Shao, X.M. Zhu, Z. Cheng, Sci. Total Environ., 2017, 586, 1076–1084.

[65] D. Meza-Figueroa, M. De la O-Villanueva, M.L. De la Parra, Atmos. Environ., 2007, 41, 276–288.

[66] H.W. Mielke, C.R. Gonzales, M.K. Smith, P.W. Mielke, Environ. Res., 1999,81, 117–129.

[67] X. Hu, Y. Zhang, J. Luo, T. Wang, H. Lian, Z. Ding, Environ. Pollut., 2011, 159, 1215–1221.

[68] W. Wang, M.J. Huang, Y. Kang, H.S. Wang, A.O. Leung, K.C. Cheung, M.H. Wong, Sci. Total Environ., 409, 2011, 4519–4527.

[69] A. Gertler, H. Kuhns, M. Abu-Allaban, C. Damm, J. Gillies, V. Etyemezian, D. Proffitt, Atmos. Environ., 2006, 40, 5976–5985.