Document Type: Original Research Article

Authors

1 National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080, Pakistan

2 Department of Chemistry, Selcuk University, Konya 42075, Turkey

3 Department of Chemistry, University of Karachi, Karachi-75270, Pakistan

4 Department of Chemistry, Government College University Hyderabad, Hyderabad 71000, Pakistan

Abstract

Toxic metal pollution is one of the most persistent environmental problems globally. This study deals with the synthesis of the p-piperdinomethyl calix[4]arene attached silica (PAS) resin and to investigate their metal ions removal efficiency from water. In batch adsorption experiment PAS resin shows good adsorption efficacy for the Cu2+ and Pb2+ metal ions. To examine the adsorption mechanism and validate the experimental adsorption data the isotherm models were applied and adsorption of the Cu2+ and Pb2+ metal ions follow Freundlich isotherm model very well with good correlation coefficient. However, the adsorption energy calculated from the D-R isotherm was at the range of 9-14 KJ/mole which describes the ion exchange nature of resin. Furthermore, breakthrough capacity of column was calculated from online adsorption as 0.027 and 0.041 mmol/g-1 for Cu2+ and Pb2+, respectively. Furthermore, thermodynamics and kinetic study revealed that, the adsorption process spontaneity and endothermic that follows the pseudo 2nd order kinetic equation with good regression coefficient.

Graphical Abstract

Keywords

[1] Y. Safari, M. Karimaei, K. Sharafi, H. Arfaeinia, M. Moradi, N. Fattahi, J. Sci. Food Agricult., 2018, 98, 2915–2924.

[2] F. Abdallah, S. Al-Khatri, Egypt. J. Agricult. Res., 2005, 83, 169–177.

[3] U. Förstner, G. T. Wittmann, Metal pollution in the aquatic environment. Editor, Springer Science & Business Media, 2012.

[4] M. Pirsaheb, N. Fattahi, Anal. Method., 2015, 7, 6266–6273.

[5] M. Ataee, T. Ahmadi-Jouibari, N. Fattahi, Int. J. Environ. Anal. Chem., 2016, 96, 271–283.

[6] H. Alyahya, A.H. El-Gendy, S. Al-Farraj, M. El-Hedeny, Water Air Soil Pollut., 2011, 214, 499–507.

[7] T.D. Mashangwa, M. Tekere, T. Sibanda, Int. J. Environ. Res., 2017, 11, 175–188.

[8] B. Topuz, M. Macit, Environ. Monit. Assess., 2011, 173, 709–722.

[9] M.H. Kojidi, A. Aliakbar, Environ. Monit. Assess., 2019, 191, 145.

[10] S.M. Shah, X. Su, F. Muhammad, Z.S. Traore, Y. Gao, ChemistrySelect, 2019, 4, 259–264.

[11] H. Noorizadeh, A. Farmany, Adv. J. Chem. A, 2019, 2, 128–135.

[12] C.D. Gutsche, J.F. Stoddart, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry, Cambridge,1989, 1.

[13] C.D. Gutsche, M. Iqbal, D. Stewart, J. Org. Chem., 1986, 51, 742–745.

[14] A. Ikeda, S. Shinkai, Chem. Rev., 1997, 97, 1713–1734.

[15] V. Stastny, P. Lhoták, V. Michlová, I. Stibor, J. Sykora, Tetrahedron, 2002, 58, 7207–7211.

[16] G.U. Akkuş, S. Memon, M. Yilmaz, Polycycl. Aromat. Comp., 2002, 22, 1075–1086.

[17] A. Yilmaz, S. Memon, M. Yilmaz, Tetrahedron, 2002, 58, 7735–7740.

[18] F.N. Memon, S. Memon, S. Memon, N. Memon, J. Chem. Eng. Data, 2011, 56, 3336–3345.

[19] O. Gezici, M. Tabakci, H. Kara, M. Yilmaz, J. Macromol. Sci. A, 2006, 43, 221–231.

[20] A.A. Bhatti, A.A. Bhatti, I.B. Solangi, S. Memon, Desalinat. Water Treat., 2013, 51, 4666–4674.

[21] R. Junejo, S. Memon, F. N. Memon, A. A. Memon, F. Durmaz, A. A. Bhatti, A. A. Bhatti, J. Chem. Eng. Data, 2019, 64, 3407–3415.

[22] C.D. Gutsche, L.G. Lin, Tetrahedron, 1986, 42, 1633–1640.

[23] C.D. Gutsche, K.C. Nam, J. Am. Chem. Soc., 1988, 110, 6153–6162.

[24] P. K. Jal, S. Patel, B. K. Mishra, Talanta, 2004, 62, 1005–1028.

[25] C. Nguyen, D. Do, Carbon, 2001, 39, 1327–1336.

[26] M. Soylak, Z. Erbas, Int. J. Environ. Anal. Chem., 2018, 98, 799–810.

[27] S. Uruş, M. Karabörk, H. Köksal, Appl. Organomet. Chem., 2018, 32, e4022.

[28] S. Baytak, A. M. Channa, E. Çamuroğlu, J. Anal. Sci. Technol., 2018, 9, 9.

[29] E. Yilmaz, M. Soylak, Environ. Monit. Assess., 2014, 186, 5461–5468.