CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 Heterocyclic Synthesis and Electro Analytical Laboratory, Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, India

2 Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah 211, Sultanate of Oman

3 Department of Pharmaceutical Science, Dr. Hari Singh Gour University, Sagar (M.P.), India

Abstract

In the present study, we successfully synthesized a series of indoles with a variety of aromatic aldehydes via one-pot route. The excellent results of the bis(indoly) methane (BIM) derivatives was obtained at the presence of 5.0 mol% p -toluene sulfonic acid in acetonitrile at room temperature using conventional process. All the as-synthesized compounds were bioactive. The synthesized BIM derivatives were evaluated for the antibacterial activity (in vitro) against the Staphylococcus aureus, and the results were compared with the standard Kanamycin. The results confirmed that, majority of the as-synthesized compounds revealed splendid antibacterial activity.

Graphical Abstract

Antibacterial Activity of Bis(Indolyl) Methane Derivatives against Staphylococcus Aureus

Keywords

[1] A.J. Kochanowska-Karamyan, M.T. Hamann, Chem. Rev., 2010, 110, 4489–4497.
[2] R.F. Dos Santos, B.S. Campos, F.A.M.G. Rego Filho, J.O. Moraes, A.L.I. Albuquerque, M.C.D. da Silva, P.V. Dos Santos, M.T. de Araujo, Photochem. Photobiol. Sci., 2019, 18, 2707–2716.
[3] V. Vailancouirt, K.F. Albizati, J. Am. Chem. Soc., 1993, 115, 3499–3502.
[4] T.  Fukuyama, X. Chen, J. Am. Chem. Soc., 1994, 116, 3125–3126.
[5] S. Sakemi, H.H. Sun, A.B.C. Nortopsentins, J. Org. Chem., 1991, 56, 4304–4307.
[6] B. Bao, Q. Sun, X. Yao, J. Hong, C.O. Lee, C.J. Sim, K.S. Im, J.H. Jung, J. Nat. Prod., 2005, 68, 711–715.
[7] A.E. Wright, S.A. Pomponi, S.S. Cross, P.J. McCarthy, J. Org. Chem., 1992, 57, 4772–4775.
[8] S.P.  Gunasekera, P.J. Mc Carthy, M.K. Borges, A.B. Hamacanthins, J. Nat. Prod., 1994, 57, 1437–1441.
[9] J. Jaratjaroonphong, S. Tuengpanya, R. Saeeng, S.  Udompong, K.  Srisook, Eur. J. Med. Chem., 2014, 83, 561–568.
[10] C. Praveen, P.D. Kumar, D. Muralidharan, P.T. Perumal, Bioorg. Med. Chem. Lett., 2010, 20, 7292–7296.
[11] P.R.  Simha, M.S. Mangali, D.K. Gari, P. Venkatapuram, P. Adivireddy, J. Hetero. Chem., 2017, 54, 2717–2724.
[12] R.S. Joshi, P.G. Mandhane, S.D. Diwakar, C.H.  Gill, Ultrason Sonochem., 2010, 17, 298–300.
[13] R.J. Flower, S. Moncada, J.R. Vane, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, New York, 1985, p 695.
[14] J.R. Weng, C.H. Tsai, S.K. Kulp, C.S. Chen, Cancer Lett., 2008, 262, 153–163.
[15] S.A.  Sadaphal, K.F.  Shelke, S.S. Sonar, M.S. Shingare, Central Eur. J. Chem., 2008,6, 622–626.
[16] M.L. Deb, P.J. Bhuyan, Tetrahedron Lett., 2006, 47, 1441–1443.
[17] G.Y. Bai, Z. Ma, L. Shi, T. Li, J. Han, G. Chen, N. Li, P. Liu, Res. Chem. Intermed., 2012, 38, 2501.
[18] N. Azizi, Z. Rahimi, Z. Monacheri, RSC Adv., 2015, 5, 61191–61198.
[19] L. Wang, W. Wei, Y. Guo, J. Xu, S. Shao, Spectrochim. Acta Part A, 2011, 78, 726–731.
[20] H. Veisi, B. Maleki, F.H. Eshbala, H. Veisi, R. Masti, S.S. Ashrafi, M. Baghayeri, RSC Adv., 2014, 4, 30683–30688.
[21] A. Ravaei, Z.H. poor, T.Z.  Salehi, Adv. Stud. Biol., 2013, 5, 61–70.