CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 Department of Chemical Engineering, Cairo University, Cairo, Egypt

2 Department of Chemical Engineering, Military Technical College, Cairo, Egypt

Abstract

Thermal insulators based on ethylene propylene diene terpolymer (EPDM) is an effective class of extreme temperature thermal insulators due to their outstanding heat, mechanical and ablative characteristics. This classed insulator is often reinforced by Kevlar pulp and fumed silica. Ammonium sulfate and antimony trioxide combination have been added as a flame retardant. To improve the elastomer ablative characteristics, multi-walled carbon nanotubes (MWCNTs) were added. We have studied different MWCNT concentrations. In this work, we investigated the effect of the MWCNTs content on the characteristics of the selected insulating formulation based on EPDM. The maximum improvement of tensile strength was 60%. Thermal stability increased by 27% through thermal gravimetric analysis (TGA-DTG), while the ablation resistivity was significantly increased by 60%. The weight loss of the 10 phr MWCNT sample decreased by 40% compared with that of the neat sample. Besides, an increase in ablation rate by 60% was recorded with the same sample. 

Graphical Abstract

Development and Characterization of MWCNT/EPDM Based Composite as a Thermal Insulator for High Thermal Applications

Keywords

[1] A.F. Ahmed, S.V. Hoa, J. Compos. Mater., 2012, 46, 1549–1559.
[2] M. Mohamed, S. El-Marsafy, S. Hasanin, T. Wafy, Int. Conference Aerospace Sci. Aviat. Technol., 2017, 17, 1–11.
[3] M.E. Awad, M. Nasser, Adv. J. Chem. A, 2020, 3, 370–377.
[4] M. Natali, I. Puri, M. Rallini, J. Kenny, L. Torre, Computat. Mater. Sci., 2016, 111, 460–480.
[5] L.M.S. Murakami, M.F. Diniz, L.M. Silva, N.B. Sanches, R. D.C.L. Dutra, Polym. Test., 2019, 79, 106042.
[6] M. Shi, D. Zhang, J. Zhu, Y. Shi, J. Sun, Y. Ji, J. Thermoplast. Compos. Mater., 2019, 32, 922–935.
[7] M. Natali, M. Monti, D. Puglia, J.M. Kenny, L. Torre, Compos. A Appl. Sci. Manufact., 2012, 43, 174–182.
[8] H. Ebadi-dehaghani, M. Nazempour, Smart Nanoparticl. Technol., 2012, 519-534.
[9] S. Singh, P. Guchhait, Am. J. Macromol. Sci., 2014, 1, 1–16.
[10] M. Guo, J. Li, K. Xi, Y. Liu, J. Ji, Acta Astronaut., 2019, 159, 508–516.
[11] Z. Xu, S. Zheng, X. Wu, Z. Liu, R. Bao, W. Yang, M. Yang, Compos. Part A Appl. Sci. Manuf.2019, 125, 105527.
[12] N. Joshi, S. Watanabe, R. Verma, R.P. Jablonski, C.I. Chen, P. Cheresh, N.S. Markov, P.A. Reyfman, A.C. McQuattie-Pimentel, L. Sichizya, Z. Lu, R. Piseaux-Aillon, D. Kirchenbuechler, A.S. Flozak, C.J. Gottardi, C.M. Cuda, H.Perlman, M. Jain, D.W. Kamp, G.R.S. Budinger, A.V. Misharin, Eur. Respir. J., 2020, 55, 1900646.
[13] B.L. Zha, Y.A. Shi, J.J. Wang, Q.D. Su, Study on ablation behavior of silicone rubber based insulation material under the condition of boron oxide particles erosion. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p 012003.
[14] P. Khalili, X. Liu, K.Y. Tshai, C. Rudd, X. Yi, I. Kong, Composit. B Eng., 2019, 159, 165–172.
[15] T. Farajpour, Y. Bayat, M. Abdollahi, M.H. Keshavarz, J. Appl. Polym. Sci., 2015, 132, 1–10.
[16] L. Liu, Z. Fang, A. Gu, Z. Guo, Tribol. Lett., 2011, 42, 59–65.
[17] E. ASTM, Standard test method for oxyacetylene ablation testing of thermal insulation materials, Annual Book of ASTM Standards2008, 15, 1–6.
[18] M. Natali, M. Rallini, D. Puglia, J. Kenny, L. Torre, Polym. Degradat. Stability, 2013, 98, 2131–2139.
[19] H.I. Kim, M. Wang, S.K. Lee, J. Kang, J.D. Nam, L. Ci, J. Suhr, Sci. Rep.2017, 7, 1–7.