Document Type: Original Research Article

Authors

1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol 46311-39631, Mazandaran, Iran

2 Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran

Abstract

Ag nanoparticle and 1-buthyl-3-methyl imidazolium bromide (1B3MIBr) carbon paste electrode(Ag/NP/1B3MIBr/CPE) amplified sensor was fabricated for determination of rutin in this project. The electro-oxidation of rutin occurs at a potential about 0.4 V at the surface of Ag/NP/1B3MIBr/CPE and this value is less positive than the unmodified CPE. pH = 7.0 was selected as an optimize condition for all of electrochemical investigations in this work and for evaluating electrochemical parameters such as diffusion coefficient (5.0 × 10-6 cm2/s). At the optimized condition for rutin analysis, the differential pulse voltammetry (DPV) peak currents of rutin show a wide linear dynamic range from 0.05-320 μM with a detection limit of 10 nM. Finally, the Ag/NP/1B3MIBr/CPE was used for determination of rutin in soy samples with good selectivity and high sensitivity.

Graphical Abstract

Keywords

[1] D. Stojković, J. Petrović, M. Soković, J. Glamočlija, J. Kukić‐Marković, S. Petrović, J. Sci. Food Agric., 2013, 93, 3205–3208.

[2] I. Kreft, N. Fabjan, K. Yasumoto, Food Chem., 2006, 98, 508–512.

[3] N. Buchner, A. Krumbein, S. Rohn, L.W. Kroh, Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communicat. Mass Spectrom., 2006, 20, 3229–3235.

[4] P.H. Cheol, Y.B. Kim, Y.S. Choi, K. Heo, S.L. Kim, Fagopyrum, 2000, 17, 63–66.

[5] J. Viskupicova, M. Danihelova, M. Ondrejovic, T. Liptaj, E.  Sturdik, Food Chem., 2010, 123, 45–50.

[6] I. Kreft, N. Fabjan, M. Germ, Fagopyrum, 2003, 20, 7–11.

[7] B. Gullón, T.A. Lú-Chau, M. Teresa, M. Juan, M. Lema, G. Eibes, Trend. Food Sci. Technol., 2017, 67, 220–235.

[8] A. Babazadeh, B. Ghanbarzadeh, H. Hamishehkar, J. Funct. Food., 2017, 33, 134–141.

[9] D. Šatínský, K. Jägerová, L. Havlíková, P. Solich, Food Anal. Method., 2013, 6, 1353–1360.

[10] R. Crebelli, G. Aquilina, E. Falcone, A.  Carere., Food Chem. Toxicol., 1987,25, 9–15.

[11] J. Bretag, D.R. Kammerer, U. Jensen, R. Carle, Food Chem., 2009, 114, 151–160.

[12] Z.L. Zhang, M.L. Zhou, Y. Tang, F.L. Li, Y.X. Tang, J.R. Shao, W.T. Xue, Y.M. Wu, Food Res. Int., 2012, 49, 389–395.

[13] B.M. Lue, N.S. Nielsen, C. Jacobsen, L. Hellgren, Z. Guo, X.  Xu., Food Chem., 2010, 123, 221–230.

[14] L. Yang, Q.H. Yan, J.Y. Ma, Q. Wang, J.W. Zhang, G.X. Xi, Trop. J. Pharm. Res., 2013, 12, 771–776.

[15] A.M. Danila, A. Kotani, H. Hakamata, F. Kusu, J. Agric. Food Chem., 2007, 55, 1139–1143.

[16] V. Kuntić, N. Pejić, B. Ivković, Z. Vujić, K. Ilić, S. Mićić, J. Pharm. Biomed., 2007, 43, 718–721.

[17] A. Ćirić, H. Prosen, M. Jelikić-Stankov, P. Đurđević, Talanta., 2012, 99, 780–790.

[18] T. Matyushina, E. Morosanova, Y.A. Zolotov, J. Anal. Chem., 2010, 65, 308–315.

[19] J.G. da Silva, M.R.L. e Silva, A.C. de Oliveira, J.R. SouzaDe, C.M.P. Vaz, C.S.P.  de Castro, J. Food Compost. Anal., 2012, 25, 1–8.

[20] V. Arabali, S. Malekmohammadi, F. Karimi, Microchem. J., 2020, 158, 105179.

[21] M. Baghayeri, M.  Rouhi, M.M. Lakouraj, M. Amiri-Aref, J. Electroanal. Chem., 2017, 784, 69–76.

[22] M. Baghayeri, H. Alinezhad, M. Fayazi, M. Tarahomi, R. Ghanei-Motlagh, B. Maleki, Electrochim. Acta., 2019, 312, 80–88.

[23] B. Maleki, M. Baghayeri, S.A.J. Abadi, R. Tayebee, A. Khojastehnezhad, RSC Adv., 2016, 6, 96644–96661.  

[24] Golikand A.N., Raoof J., Baghayeri M., Asgari M., Irannejad L., Russ. J. Electrochem., 2009, 45, 192–198.

[25] M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Microchim. Acta, 2018, 185, 320.      

[26] A. Hojjati-Najafabad, M.S. Rahmanpour, F. Karimi, H. Zabihi-Feyzaba, S. Malekmohammadi, S. Agarwal, V.K. Gupta, Int. J. Electrochem. Sci., 2020, 15, 6969–6980.           

[27] T. Zabihpour, S.A. Shahidi, H. Karimi Maleh, A. Ghorbani-Hasan Saraei, Eurasian chem. Commun., 2020, 2, 362–373.

[28] M. Baghayeri, B. Mahdavi, Z. Hosseinpor‐Mohsen Abadi, S. Farhadi, Appl. Organomet. Chem., 2018, 32, e4057.

[29] A. Targhoo, A. Amiri, M. Baghayeri, Microchim. Acta., 2018, 185, 15.         

[30] M. Alizadeh, P.A. Azar, S.A. Mozaffari, H. Karimi-maleh, A.M. Tamaddon, Front. Chem., 2020, 8, 677.

[31] A.N. Golikand, J. Raoof, M. Baghayeri, M. Asgari, L. Irannejad, Russ. J. Electrochem., 2009, 45, 192–198.   

[32] M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, Ionics., 2017, 23, 1553–1562.

[33] H.  Beitollahi, A. Mohadesi, F. Ghorbani, H. Karimi-Maleh, M. Baghayeri, R. Hosseinzadeh, Chin. J. Catal., 2013, 34, 1333–1338.

[34] B. Davarnia, S.A. Shahidi, H. Karimi-Maleh, A. Ghorbani-Hasan Saraei, F. Karimi, Int. J. Electrochem. Sci., 2020, 15, 2549–2560.

[35] B. Rezaei, N. Majidi, A.A. Ensafi, H. Karimi-Maleh, Anal. Method., 2011, 3, 2510–2516.