Document Type: Review Article

Authors

Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Separation of light hydrocarbons (LHs) is one of the most important and mostly energy intensive petrochemical processes. Several techniques have been developed industrially based on traditional separation methods such as distillation and extraction. However, they mainly suffer from high-energy consumption and low efficiency. Adsorptive separation using porous solid materials and membrane separation are the promising processes to separate the mixture of light hydrocarbons comprising paraffin/olefin mixtures of C1/C2/C3 hydrocarbons. Introducing and developing new porous adsorbents for selective separation of LHs is highly needed because of competitive adsorption and challenging separations that are arising from the similarity in some structural and physicochemical properties of LHs. In addition, separation under the mild condition is of great importance for the application in industry. In this review, we discussed some methods for separation of LHs mixtures and highlighted the recent advances in the separation techniques based on using porous structures especially metal organic frameworks in the form of porous adsorbents and membranes.

Graphical Abstract

Keywords

[1] Y. Li, H. Luo, Chem. Eng. Res. Design, 2015, 93, 632–639.

[2] Gao, T., Lin, W.S., Gu, A.Z., Energy Convers. Manage, 2011, 52, 2401–2404

[3] B. Hua, H. Guo, Y.J. Li, Z. Xiao, Petrochem. Technol., 2005, 3, 705–709.

[4] K. Holmquist, Oil Gas J., 2010, 108, 46–52.

[5] S. Kumar, H.T. Kwon, K.H. Choi, W. Lim, J. H. Cho, K. Tak, I. Moon, Appl. Energy, 2011, 88, 4264–4273.

[6] Y.J. Li, X.S. Chen, M.H. Chein, Chem. Eng. Res. Des., 2012, 90, 1500–1505.

[7] Li, Y.J., Yin, H., J. South China Univ. Technol. (Nat. Sci. Educ.), 2009, 37, 62–65.

[8] Z. Lei, C. Li, B. Chen, Separat. Purificat. Rev., 2003, 32, 121–213.

[9] X. Tian, X. Zhang, L. Wei, S. Zeng, L. Huang, S. Zhang, Green Chem., 2010, 12, 1263–1273.

[10] Y. Xiaojian, Y. Xuan, P. Ouyang, Chin. J. Chem. Eng., 2009, 17, 27–35.

[11] S. Faramawy, A.Y. El-Naggar, A.M. El-Fadly, S.M. El-Sabagh, A.A. Ibrahim, Arabian J. Chem., 2016, 9, S765–S775.

[12] M. Gehre, Z. Guo, G. Rothenberg, S. Tanase, Chem. Sus. Chem., 2017, 10, 3947–3963.

[13] V. Kumar, Y. S. Lee, J. W. Shin, K. H. Kim, D. Kukkar, Y. F. Tsang, Environ. Int., 2020, 135, 105356.

[14] H. Wang, B. Wang, J. Li, T. Zhu, Separat. Purificat. Technol., 2019, 209, 535–541.

[15] Y. Yang, P. Bai, X. Guo, Ind. Eng. Chem. Res., 2017, 56, 14725–14753.

[16] H. Xing, X. Zhao, Q. Yang, B. Su, Z. Bao, Y. Yang, Q. Ren, Ind. Eng. Chem. Res., 2013, 52, 9308–9316.

[17] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang,  J. Phys. Chem. Reference Data, 2006, 35, 1475–1517.

[18] Y. Cao, L. Ge, X. Dong, Q. Yang, Z. Bao, H. Xing, Q.  Ren, ACS Sust. Chem. Eng., 2018, 6, 2379–2385.

[19] R. Hayes, G.G. Warr, R. Atkin, Chem. Rev., 2015, 115, 6357–6426.

[20] M.F. Costa Gomes, J. Chem. Eng. Data, 2007, 52, 472–475.

[21] A. Finotello, J.E. Bara, D. Camper, R. D. Noble, Ind. Eng. Chem. Res, 2008, 47, 3453–3459.

[22] Y.S. Kim, J. H. Jang, B. D. Lim, J. W. Kang, C. S. Lee, Fluid Phase Equilibria, 2007, 256(1-2), 70–74.

[23] D. Camper, C. Becker, C. Koval, R. Noble, Ind. Eng. Chem. Res., 2005, 44, 1928–1933.

[24] Y. Huang, Y. Zhang, H. Xing, Chin. J. Chem. Eng., 2019, 27, 1374–1382.

[25] M. Fallanza, M. González-Miquel, E. Ruiz, A. Ortiz, D. Gorri, J. Palomar, I. Ortiz, Chem. Eng. J., 2013, 220, 284–293.

[26] M. Palomino, A. Corma, A. Corma, F. Rey, S. Valencia, Langmuir, 2010, 26, 1910–1917.

[27] T. H. Yeon, H. S. Han, E. D. Park, J. E. Yie, Microp. Mesop. Mater., 2009, 119, 349–355.

[28] F.N. Ridha, Y. Yang, P.A. Webley, Microp. Mesop. Mater., 2009, 117, 497–507.

[29] H. Liu, Z. Zhang, B.H. Chen, Y. Zhao,  J. Porous Mater., 2008, 15, 119–125.

[30] S. Schmittmann, C. Pasel, M. Luckas, D. Bathen, J. Chem. Eng. Data, 2020, 65, 706–716.

[31] Y. Yang, N. Burke, S. Ali, S. Huang, S. Lim, Y. Zhu, RSC Adv., 2017, 7, 12629–12638.

[32] X. Li, T. Guo, L. Zhu, C. Ling, Q. Xue, W. Xing, Chem. Eng. J., 2018, 338, 92–98.

[33] A.S. Mestre, C. Freire, J. Pires, A.P. Carvalho, M.L. Pinto, J. Mater. Chem. A, 2014, 2, 15337–15344.

[34] B. Yuan, J. Wang, Y. Chen, X. Wu, H. Luo, S. Deng, J. Mater. Chem. A, 2016, 4, 2263–2276.

[35] Y. He, R. Krishna, B. Chen, Energy Environ. Sci., 2012, 5, 9107–9120.

[36] J. Wang, R. Krishna, T. Yang, S. Deng, J. Mater. Chem. A, 2016, 4, 13957–13966.

[37] Q. Xue, X. Lia, X. Chang, C. Ling, L. Zhu, W. Xing, Appl. Surface Sci., 2018, 444, 772–779.

[38] M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Angew. Chem. Int. Ed. Engl., 1997, 36, 1725–1727.

[39] A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Chem. Commun., 2008, 2008, 4192–4194.

[40] V. Gupta, S. Mohiyuddin, A. Sachdev, P.K. Soni, P. Gopinath, S. Tyagi, J. Drug Del. Sci. Technol., 2019, 52, 846–855.

[41] W.P. Lustig, S. Mukherjee, N.D. Rudd, A. V. Desai, J.Li, S. K. Ghosh, Chem. Soc. Rev., 2017, 46, 3242–3285.

[42] W.T. Kou, C.X. Yang, X.P. Yan, J. Mater. Chem. A, 2018, 6, 17861–17866.

[43] O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, J.T. Hupp, J. Am. Chem. Soc., 2010, 132, 950–952.

[44] J.R. Li, A.A. Yakovenko, W. Lu, D.J. Timmons, W. Zhuang, D. Yuan, H.C. Zhou, J. Am. Chem. Soc., 2010, 132, 17599–17610.

[45] A. Pichon, S.L. James, CrystEngComm., 2008, 10, 1839-1847.

[46] U. Mueller, H. Puetter, M. Hesse, M. Schubert, H. Wessel, J. Huff, M. Guzmann, Method for electrochemical production of a crystalline porous metal organic skeleton material, 2011, US Patents.

[47] I.A. Ibarra, P.A. Bayliss,E. Pérez, S. Yang, A. J. Blake, H. Nowell, D. R. Allan, M. Poliakoff, M. Schröder, Green Chem., 2012, 14, 117-122.

[48] H. Guo, G. Zhu, I.J. Hewitt, S. Qiu, J. Am. Chem. Soc., 2009, 131, 1646-1647.

[49] W.J. Son, J. Kim, J. Kim, W.S. Ahn, Chem. Commun., 2008, 47, 6336-6338.

[50] G. Chang, B. Li, H. Wang, T. Hu, Z. Bao, B. Chen, Chem. Commun., 2016, 52, 3494-3496.

[51] H.M. Wen, B. Li, H. Wang, R. Krishna, B. Chen, Chem. Commun., 2016, 52, 1166-1169.

[52] C. Gücüyener, J. van den Bergh, J. Gascon, F. Kapteijn, J. Am. Chem. Soc., 2010, 132, 17704-17706.

[53] D.L. Chen, N. Wang, C. Xu, G. Tu, W.  Zhu, R. Krishn, Microp. Mesop. Mater., 2015, 208, 55-65.

[54] K. Kishida, Y. Watanabe, S. Horike, Y. Watanabe, Y. Okumura, Y. Hijikata, S. Sakaki,  S. Kitagawa, Eur. J. Inorg. Chem., 2014, 2014, 2747-2752.

[55] Y. Chen, Z. Qiao, D. Lv, C. Duan, X. Sun, H. Wu, R. Shi, Q. Xia, Z. Li, Chem. Eng. J., 2017, 328, 360-367.

[56] E.D. Bloch, W. L. Queen, R. Krishna, J.M. Zadrozny, C. M. Brown, J.R. Long, Science, 2012, 335, 1606-1610.

[57] T. Chen, Y. Ye, Y. Ye, M. Yin, L. Chen, Z. K. Ke, J. Guo, M. Zhang, Z. Yao, Z. Zhang, S. Xiang, Cryst. Growth Des., 2020, 20, 2099–2105.

[58] X.Y. Li, Y. Z. Li, Y. Yang, L. Hou, Y.Y. Wang, Z. Zhu, Chem. Commun., 2017, 53, 12970–12973.

[59] Y. Liu, A. Kasik, N. Linneen, J. Liu, Y.S. Lin, Chem. Eng. Sci., 2014, 118, 32–40.

[60] C. Zhang, R. P Lively, K. Zhang, J. R Johnson, O. Karvan, W. J Koros, J. Phys. Chem. Lett., 2012, 3, 2130–2134.

[61] S. Qian, L. Xia, L. Yang, X. Wang, X. Suo, X. Cui, H. Xing, J. Membrane Sci., 2020, 611,118329.

[62] E. Andres-Garcia, J. López-Cabrelles, L. Oar-Arteta, B. Roldan-Martinez, M. Cano-Padilla, J. Gascon, G. M. Espallargas, F. Kapteijn, Chem. Eng. J., 2019, 371, 848–856.

[63] W. Fan, X. Wang, X. Wang, X. Zhang, X. Liu, Y. Wang, Z. Kang, F. Dai, B. Xu, R. Wang, D. Sun, ACS Central Sci., 2019, 5, 1261–1268.

[64] Y. Pan, W. Liu, Y. Zhao, C. Wang, Z. Lai,  J. Membrane Sci., 2015, 493, 88–96.

[65] J.B. James, L. Lang, L. Meng, J. Y. Lin, ACS Appl. Mater. Interfaces, 2020, 12, 3893–3902.