Document Type: Original Research Article

Authors

1 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya

2 Central Laboratory at Sebha University, Sebha, Libya

3 Department of Botany (Microbiology Lab), Faculty of Science, Sebha University, Sebha, Libya

10.22034/ajca.2020.247227.1210

Abstract

Antibiotic-resistant pathogenic bacteria (e.g., multi-drug resistant bacteria, MDR) have been one of the major threats to human health. Nanoparticles, the newly emerging tools, hold the promise to solve the antibiotic resistance-related problems. This study aimed at evaluating the antibacterial activities of Ca-doped ceria nanoparticles (CDC) against the Gram-negative bacteria (Pseudomonas aeruginosa and Klebsiella pneumoniae) and Gram-positive bacteria (Staphylococcus aureus) using optical density measurement. Co-precipitation method was used to synthesize the Ca-doped ceria nanoparticles with and without addition of cetyltrimethylammonium bromide (CTAB, cationic surfactant). The prepared nanoparticles were characterized using the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. The XRD results demonstrated that, the CDC-CTAB nanoparticles (synthesized via CTAB-assisted co-precipitation method) had the smaller crystallite size (16.26 nm) and higher specific surface area (56.72 m2/g) compared to the CTAB-free synthesized sample (CDC nanoparticles). In addition, the CDC-CTAB nanoparticles exhibited a better inhibition percentage of bacteria growth (29.54-34.08%) against both the Gram-negative and Gram-positive bacteria. In terms of materials cost and toxicity, Ca-doped ceria nanoparticles can be considered as promising materials and, their biological activity might be evaluated against other microorganisms.

Graphical Abstract

Keywords

[1] A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Chem. Soc. Rev., 2019, 48, 415–427.

[2] P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan, M. Martins, A.R. Fernandes, Front. Microbiol., 2018, 9, 1441.

[3] C.H. Wang, Y.H. Hsieh, Z.M. Powers, C.Y. Kao, Int. J. Mol. Sci., 2020, 21, 1061.

[4] M.M. Hossain, S.A. Polash, M. Takikawa, R.D. Shubhra, T. Saha, Z. Islam, S. Hossain, M.A. Hasan, S. Takeoka, S.R. Sarker, Front. Bioeng. Biotech., 2019, 7, 239.

[5] K.M. Ahmad, A.A. Alamen, F.A. Atiya, A.A. Elzen, J. Adv. Lab. Res. Biol., 2018, 9, 1–8.

[6] K.M. Ahmad, A.A. Alamen, JOPAS., 2019, 18, 11–16.

[7] K.M. Ahmad, A.A.M. Alamen, S.A.M.S. Shamsi, A.A. Elzen, Med. J. Islamic World Acad. Sci., 2019, 27, 9–16.

[8] I.A.C.G. United, No Time to Wait: Securing the future from drug-resistant infections, in: Report to the Secretary-General of the United Nations, 2019.

[9] M. Qi, W. Li, X. Zheng, X. Li, Y. Sun, Y. Wang, C. Li, L. Wang, Front. Mater., 2020, 7, 213.

[10] M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du, C. Yan, Sci. China. Mater., 2019, 62, 1727–1739.

[11] W. Abdussalam-Mohammed, Adv. J. Chem. A, 2020, 3,192–210.

[12] S. Stankic, S. Suman, F. Haque, J. Vidic, J. Nanobiotechnol., 2016, 14, 1–20.

[13] P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, ACS Nano, 2009, 3, 279–290.

[14] A.P. Ingle, N. Duran, M. Rai, Appl. Microbiol. Biotechnol., 2014, 98, 1001–1009.

[15] N. Thakur, P. Manna, J. Das, J. Nanobiotechnol., 2019, 17, 84.

[16] F. Huang, J. Wang, W. Chen, Y. Wan, X. Wang, N. Cai, J. Liu, F. Yu, J. Taiwan Inst. Chem. Eng., 2018, 83, 40–49.

[17] D.S. Tsai, T.S. Yang, Y.S. Huang, P.W. Peng, K.L. Ou, Int. J. Nanomedicine, 2016, 11, 2531.

[18] P.D. Tam, C.X. Thang, Mater. Sci. Eng. C, 2016, 58, 953–959.

[19] B.C. Nelson, M.E. Johnson, M.L. Walker, K.R. Riley, C.M. Sims, Antioxidants, 2016, 5, 15.

[20] S. Parvathya, B. Venkatramanb, J. Nanosci. Curr. Res., 2017, 2, 1–9.

[21] S. Patil, S. Reshetnikov, M.K. Haldar, S. Seal, S. Mallik, J. Phys. Chem. C, 2007, 111, 8437–8442.

[22] K. Govindarasu, K. Gnanasekaran, S. Balaraman, B. Iruson, S. Krishnamoorthy, B. Padmaraj, E. Manikandan, S. Dhananjayan, J. Nanosci. Lett., 2019, 9, 1–16.

[23] A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, S. Ravikumar, Y.S. Khadar, Mater. Today: Proceedings, 2020, 26, 3588–3594.

[24] Y.S. Khadar, A. Balamurugan, V. Devarajan, R. Subramanian, S.D. Kumar, J. Mater. Res. Technol., 2019, 8, 267–274.

[25] Y.S. Khadar, A. Balamurugan, V. Devarajan, R. Subramanian, Orient. J. Chem., 2017, 33, 2405–2411.

[26] S. Banerjee, P.S. Devi, D. Topwal, S. Mandal, K. Menon, Adv. Funct. Mater., 2007, 17, 2847–2854.

[27] I.A. Amar, M.M. Ahwidi, M. Zidan, I. Abdalsamed, A. Ali, LJST, 2018, 7, 127–132.

[28] K. Zhao, Y. Du, J. Power Sources, 2017, 347, 79–85.

[29] I.A. Amar, H.M. Harara, Q.A. Baqul, M.A. Abdulqadir, F.A. Altohami, M.M. Ahwidi, I.A. Abdalsamed, F.A. Saleh, Asian J.Nanosci.Mater., 2020, 3, 1–14.

[30] L. Truffault, M.T. Ta, T. Devers, K. Konstantinov, V. Harel, C. Simmonard, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron, J.P. Blondeau, Mater. Res.Bull., 2010, 45, 527–535.

[31] M. Nyoka, Y.E. Choonara, P. Kumar, P.P. Kondiah, V. Pillay, Nanomaterials., 2020, 10, 242.

[32] J.T. Shang, M. Yang, W.L. Zhang, C. Tan, D.J. Han, Appl. Mech. Mater., 2013, 268, 180–183.

[33] B. Jain, A.K. Singh, A. Hashmi, M.A.B.H. Susan, J.P. Lellouche, Adv. Compos. Hybrid Mater., 2020, 3, 430–441.

[34] H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, Rsc Adv, 2012, 2, 12413–12423.

[35] Z. Mosayebi, M. Rezaei, N. Hadian, F.Z. Kordshuli, F. Meshkani, Mater. Res. Bull., 2012, 47, 2154–2160.

[36] Q. Zhang, J. Yang, Y.N. Gao, C.Y. Li, L. Sun, Appl Petrochem. Res., 2015, 5, 247–253.

[37] A.P. Amaliya, S. Anand, S. Pauline, J. Nanosci. Tech., 2016, 186–188.

[38] Y. Ma, X. Wang, H.A. Khalifa, B. Zhu, M. Muhammed, Int. J. Hydrogen Energy, 2012, 37, 19401–19406.

[39] H.Y. He, J. Lu, Sep. Purif. Technol., 2017, 172, 374–381.

[40] B. Elahi, M. Mirzaee, M. Darroudi, R.K. Oskuee, K. Sadri, M.S. Amiri, Ceram. Int., 2019, 45, 4790–4797.

[41] A.A. Athawale, M.S. Bapat, P.A. Desai, J. Alloys Compd., 2009, 484, 211–217.

[42] R. Murugana, L. Kashinath, R. Subash, P. Sakthivel, K. Byrappa, S. Rajendran, G. Ravi, Mater. Res. Bull., 2018, 97, 319–235.

[43] D.M.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Mater. Res., 2016, 19, 478–482.

[44] S. Gnanam, V. Rajendran, J. Alloys. Compd., 2018, 735, 1854–1862.

[45] R.P. Senthilkumar, V. Bhuvaneshwari, R. Ranjithkumar, S. Sathiyavimal, V. Malayaman, B. Chandarshekar, Int. J. Biol. Macromol., 2017, 104, 1746–1752.

[46] D.H. Kim, J.C. Park, G.E. Jeon, C.S. Kim, J.H. Seo, Biotechnol. Bioprocess Eng., 2017, 22, 210–217.

[47] J.S. Dickson, M. Koohmaraie, Appl. Environ. Microbiol., 1989, 55, 832–836.

[48] E. Alpaslan, B.M. Geilich, H. Yazici, T.J. Webster, Sci Rep, 2017, 7, 1–12.

[49] M. Saliani, R. Jalal, E.K. Goharshadi, Jundishapur. J. Microbiol., 2015, 8, e17115.