Document Type : Original Research Article

Authors

Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

In this work, the newly prepared functionalized graphene oxide (GO), denoted as GO-SiC3-NH3-H2PW, was found as an effective nanocatalyst for a one-pot reaction of dimedone, aryl aldehydes, and malononitrile, giving rise to tetrahydrobenzo[b]pyran derivatives. The reactions were conducted in water, giving the corresponding products in 88-98% yields over 4-15 min. Other advantages of the method include cheap catalyst, easy work-up, absence of any dangerous solvents and the catalyst's reusability for up to five consecutive runs (97, 96, 95, 95, and 94 in first to fifth use, respectively).

Graphical Abstract

Another Successful Application of Newly Prepared GO-SiC3-NH3-H2PW as Highly Efficient Nanocatalyst for Fast Synthesis of Tetrahydrobenzo[b]pyrans

Keywords

[1] S. Sajjadifar, S. Rezayati, Chem. Pap., 2014, 68, 531–539.

[2] A. Fihri, C. Len, R.S. Varma, A. Solhy, Coord. Chem. Rev., 2017, 347, 48–76.

[3] A. Davoodnia, R. Mahjoobin, N. Tavakoli-Hoseini, Chin. J. Catal., 2014, 35, 490–495.

[4] P. Hu, M. Long, Appl. Catal. B., 2016, 181, 103–117.

[5] E. kazemi, A. Davoodnia, A. Nakhaei, S. Basafa, N. Tavakoli-Hoseini, Adv. J. Chem. A, 2018, 1, 96–104.

[6] M.M. Heravi, H. Hamidi, N. Karimi, A. Amouchi, Adv. J. Chem. A, 2018, 1, 1–6.

[7] M. Rohaniyan, A. Davoodnia, S.A. Beyramabadi, A. Khojastehnezhad, Appl. Organometal. Chem., 2019, 33, Art. No. e4881.

[8] J. Zhao, Y. Xie, D. Hu, D. Guan, J. Chen, J. Yu, S. He, Y. Lü, H. Liu, S. Bao, L. Wang, Synth. Met., 2015, 204, 95–102.

[9] S. Kumari, A. Shekhar, D.D. Pathak, RSC Adv., 2014, 4, 61187–61192.

[10] N. Shang, C. Feng, H. Zhang, S. Gao, R. Tang, C. Wang, Z. Wang, Catal. Commun., 2013, 40, 111–115.

[11] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339–1339.

[12] J. Zhang, Y. Yang, J. Fang, G.-J. Deng, H. Gong, Chem. Asian J., 2017, 12, 2524–2527.

[13] M. Shaikh, S.K. Singh, S. Khilari, M. Sahu, K.V.S. Ranganath, Catal. Commun., 2018, 106, 64–67.

[14] J. Zhang, S. Li, G.-J. Deng, H. Gong, ChemCatChem, 2018, 10, 376–380.

[15] S. Bhattacharya, P. Ghosh, B. Basu, Tetrahedron Lett., 2018, 59, 899–903.

[16] M. Coroş, F. Pogăcean, L. Măgeruşan, C. Socaci, S. Pruneanu, Frontiers of Materials Science 2019, 13, 23–32.

[17] H. Ahmad, M. Fan, D. Hui, Composites Part B, 2018, 145, 270–280.

[18] J. Zhao, Y. Xie, J. Fang, Y. Ling, Y. Gao, X. Liu, Q. Zhang, Q. Xu, H. Xiong, J. Mater. Sci., 2016, 51, 10574–10584.

[19] J. Li, H. Xu, Talanta, 2017, 167, 623–629.

[20] M. Keyhaniyan, A. Shiri, H. Eshghi, A. Khojastehnezhad, New J. Chem., 2018, 42, 19433–19441.

[21] A. Khojastehnezhad, M. Bakavoli, A. Javid, M.M. Khakzad Siuki, F. Moeinpour, Catal. Lett., 2019, 149, 713–722.

[22] A. Khojastehnezhad, M. Bakavoli, A. Javid, M.M. Khakzad Siuki, M. Shahidzadeh, Res. Chem. Intermed., 2019, 45, 4473–4485.

[23] H. Su, Z. Li, Q. Huo, J. Guan, Q. Kan, RSC Adv., 2014, 4, 9990–9996.

[24] P.K. Khatri, S. Choudhary, R. Singh, S.L. Jain, O.P. Khatri, Dalton Trans., 2014, 43, 8054–8061.

[25] S. Kumari, A. Shekhar, D.D. Pathak, RSC Adv., 2016, 6, 15340–15344.

[26] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev., 2010, 39, 228–240.

[27] S. Verma, M. Aila, S. Kaul, S.L. Jain, RSC Adv., 2014, 4, 30598–30604.

[28] S. Omidi, A. Kakanejadifard, F. Azarbani, J. Mol. Liq., 2017, 242, 812–821.

[29] E. Kowsari, M.R. Chirani, Carbon, 2017, 118, 384–392.

[30] Y. Wu, Z. Zhao, M. Chen, Z. Jing, F. Qiu, Monatsh. Chem., 2018, 149, 1367–1377.

[31] Z. Ghadamyari, A. Khojastehnezhad, S.M. Seyedi, A. Shiri, ChemistrySelect, 2019, 4, 10920–10927.

[32] E. Doustkhah, S. Rostamnia, J. Colloid Interface Sci., 2016, 478, 280–287.

[33] S. Rayati, E. Khodaei, S. Shokoohi, M. Jafarian, B. Elmi, A. Wojtczak, Inorg. Chim. Acta, 2017, 466, 520–528.

[34] M.A. Mar’yasov, V.P. Sheverdov, V.V. Davydova, O.E. Nasakin, Pharm. Chem. J., 2017, 50, 798–799.

[35] I. Fatima, R. Saxena, G. Kharkwal, M.K. Hussain, N. Yadav, K. Hajela, P.L. Sankhwar, A. Dwivedi, J. Steroid Biochem. Mol. Biol., 2013, 138, 123–131.

[36] A.E.F.G. Hammam, O.I. Abd El-Salam, A.M. Mohamed, N.A. Hafez, Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem., 2005, 44, 1887–1893.

[37] I.J.S. Fairlamb, L.R. Marrison, J.M. Dickinson, F.J. Lu, J.P. Schmidt, Bioorg. Med. Chem., 2004, 12, 4285–4299.

[38] K. Rehse, W. Schinkel, Arch. Pharm., 1983, 316, 988–994.

[39] R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett., 2007, 17, 6459–6462.

[40] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem., 1993, 28, 517–520.

[41] D. Armetso, W.M. Horspool, N. Martin, A. Ramos, C. Seoane, J. Org. Chem., 1989, 54, 3069–3072.

[42] S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc. Chem. Commun., 1988, 1202–1204.

[43] R.S. Bhosale, C.V. Magar, K.S. Solanke, S.B. Mane, S.S. Choudhary, R.P. Pawar, Synth. Commun., 2007, 37, 4353–4357.

[44] M. Amirnejad, M.R. Naimi-Jamal, H. Tourani, H. Ghafuri, Monatsh. Chem., 2013, 144, 1219–1225.

[45] S. Nemouchi, R. Boulcina, B. Carboni, A. Debache, C. R. Chim., 2012, 15, 394–397.

[46] S. Gurumurthi, V. Sundari, R. Valliappan, E. J. Chem., 2009, 6, S466–S472.

[47] S. Rathod, B. Arbad, M. Lande, Chin. J. Catal., 2010, 31, 631–636.

[48] F. Shirini, M. Safarpoor, N. Langarudi, J. Mol. Liq., 2017, 234, 268–278.

[49] L.M. Wang, J.H. Shao, H. Tian, Y.H. Wang, B. Liu, J. Fluorine Chem., 2006, 127, 97–100.

[50] R. Mozafari, F. Heidarizadeh, Polyhedron, 2019, 162, 263–276.

[51] B. Maleki, H. Eshghi, M. Barghamadi, N. Nasiri, A. Khojastehnezhad, S.S. Ashrafi, O. Pourshiani, Res. Chem. Intermed., 2016, 42, 3071–3093.

[52] B. Maleki, N. Nasiri, R. Tayebee, A. Khojastehnezhad, H.A. Akhlaghi, RSC Adv., 2016, 6, 79128–79134.

[53] M. Hajjami, F. Gholamian, R.H.E. Hudson, A.M. Sanati, Catal. Lett., 2019, 149, 228–247.

[54] J.T. Li, W.Z. Xu, L.C. Yang, T.S. Li, Synth. Commun., 2004, 34, 4565–4571.

[55] I. Devi, P.J. Bhuyan, Tetrahedron Lett., 2004, 45, 8625–8627.

[56] S. Khaksar, A. Rouhollahpour, S. Mohammadzadeh Talesh, J. Fluorine Chem., 2012, 141, 11–15.

[57] R. Hekmatshoar, S. Majedi, K. Bakhtiari, Catal. Commun., 2008, 9, 307–310.

[58] J. Zheng, Y. Li, Mendeleev Commun., 2011, 21, 280–281.

[59] Z. Hoseini, A. Davoodnia, A. Khojastehnezhad, M. Pordel, Eurasian Chem. Commun., 2020, 2, 398–409.

[60] A. Davoodnia, M. Khashi, N. Tavakoli-Hoseini, Chin. J. Catal., 2013, 34, 1173–1178.

[61] M. Rohaniyan, A. Davoodnia, A. Nakhaei, Appl. Organomet. Chem., 2016, 30, 626–629.

[62] A. Davoodnia, A. Nakhaei, N. Tavakoli-Hoseini, Z. Naturforsch., 2016, 71b, 219–225.

[63] M. Fattahi, A. Davoodnia, M. Pordel, Russ. J. Gen. Chem., 2017, 87, 863–867.

[64] F. Tajfirooz, A. Davoodnia, M. Pordel, M. Ebrahimi, A. Khojastehnezhad, Appl. Organometal. Chem., 2018, 32, Art. No. e3930.

[65] A. Davoodnia, M. Bakavoli, E. Imannezhad, N. Tavakoli-Hoseini, Indian J. Heterocycl. Chem., 2009, 19, 89–90.

[66] M. Khashi, A. Davoodnia, V.S. Prasada Rao Lingam, Res. Chem. Intermed., 2015, 41, 5731–5742.

[67] S. Vazirimehr, A. Davoodnia, M. Nakhaei-Moghaddam, N. Tavakoli-Hoseini, Heterocycl. Commun., 2017, 23, 65–70.

[68] N. Dorostkar-Ahmadi, A. Davoodnia, N. Tavakoli-Hoseini, H. Behmadi, Indian J. Heterocycl. Chem., 2018, 28, 543–549.

[69] N. Dorostkar-Ahmadi, A. Davoodnia, N. Tavakoli-Hoseini, H. Behmadi, Z. Naturforsch., 2019, 74b, 175–181.

[70] A. Chanda, V.V. Fokin, Chem. Rev., 2009, 109, 725–748.

[71] C.I. Herrerias, X. Yao, Z. Li, C.J. Li, Chem. Rev., 2007, 107, 2546–2562.

[72] S. Ribe, P. Wipf, Chem. Commun., 2001, 4, 299–307.