Document Type : Original Research Article


Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran



In this study, an efficient method was performed to extract and measure the Cu(II) metal ions using the modified disks of octadecyl silica membrane by nano-Fe3O4-encapsulated-dioctyl phthalate and linked-diethylenetriamine (magnetic nano- Fe3O4 -DOP- DTA). This method involves forming a complex on the ENVI-18 DISKTM surfaces, followed by maintained species removed from the surface with the least amount of organic solvent. The act of elution in this technique is very impressive. The important factors are including the pH, stripping solvent, ligand values, rate of sample flow, and the effect of interfering ions were evaluated. The preconcentration factor was 500 in the optimum analysis situations of whole parameters. Analysis parameters contain the limit of detection and the most capacity of copper (II) ions sorption was achieved 6 μg/L and 385 ± 5 µg, respectively. Finally, the Cu2+ ions were extracted in various aqueous solutions by this technique.

Graphical Abstract

Preconcentration and Separation of Ultra-Trace Cu (II) with Disks of Octadecyl Silica Membrane Modified Nano-Fe3O4-Encapsulated-Dioctyl Phthalate and Linked-Diethylenetriamine


[1] A. Moghimi, Russ. J. Phys. Chem. A. 2013, 87, 1851–1858.  

[2] M. Modo, M. Hoehn, J. W. Bulte, Mol. Imaging, 2005, 4, 143–164.   

[3] A. Moghimi, M. Yari, J. Chem. Rev., 2019, 1, 1–18.   

[4] A. Moghimi, Chin. J. Chem., 2008, 26, 1831–1836.  

[5] L.M. Ravelo-Pérez, A.V. Herrera-Herrera, J. Hernández-Borges, M.Á. Rodríguez-Delgado, J. Chromatogr. A, 2010, 1217, 2618–2641.   

[6] N. Salehi, A. Moghimi, H. Shahbazi, Int. J. Environ. Anal. Chem., 2020, 1–17.              

[7] S. Igarashi, N. Ide, Y. Takagai, Anal. Chim. Acta. 2000, 424, 263–269.            

[8] A.N. Anthemidis, G.A. Zachariadis, J.A. Stratis, Talanta, 2001, 54, 935–942.               

[9] M. Endo, K. Suzuki, S. Abe, Anal. Chim. Acta., 1998, 364, 13–17.      

[10] D. Zendelovska, G. Pavlovska, K. Cundeva, T. Stafilov, Talanta, 2001, 54, 139–146.

[11] I. Narin, M. Soylak, L. Elçi, M. Doğan, Talanta, 2000, 52, 1041–1046.

[12] J. Liu, W. Wang, G. Li, Talanta, 2001, 53, 1149–1154.        

[13] M. Campderros, A. Acosta, J. Marchese, Talanta, 1998, 47, 19–24.               

[14] A. Moghimi, Orient. J. Chem., 2006, 22, 527–532.

[15] J. Pawliszyn, Solid phase microextraction: theory and practice, John Wiley & Sons, 1997.

[16] T. Pourshamsi, F. Amri, M. Abniki, J. Iran. Chem. Soc., 2020, 1–20.              

[17] A. Moghimi, Russ. J. Phys. Chem. A. 2013, 87, 1203–1209.

[18] Y. Yamini and M. Ashraf‐Khorassani, J. High Resolut. Chromatogr., 1994, 17, 634–638.   

[19] M. Shamsipur, A. Ghiasvand, H. Sharghi, Int. J. Environ. Anal. Chem., 2001, 82, 23–29.       

[20] M.E. Mahmoud, M.S. Abdelwahab, E.M. Fathallah, Chem. Eng. J., 2013, 223, 318–327.

[21] M.E. Mahmoud, A.A. Yakout, K.H. Hamza, M.M. Osman, J. Ind.  Eng. Chem., 2015, 25, 207–215.

[22] D.F. Hagen, C.G. Markell, G.A. Schmitt, and D. D. Blevins, Anal. Chim. Acta., 1990, 236, 157–164.

[23] M. Abniki, A. Moghimi, F. Azizinejad, J. Serb. Chem. Soc., 2020, 85, 1223–1235.    

[24] M. Abniki, A. Moghimi, F. Azizinejad, J. Chin. Chem. Soc., 2020, 1–10.