CiteScore: 4.9     h-index: 21

Document Type : Review Article

Authors

1 Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt

2 Senior Researcher Chemist, Greater Cairo Water Company, Cairo, Egypt

Abstract

Ortho-vanillin Schiff baseare multipurpose ligands which are synthesized from the condensation of 2-Hydroxy-3-methoxybenzaldehyde with amines compounds to designing an infinite number of potential compounds. Ortho-vanillin Schiff base grow into very common in coordination chemistry for the reason that it can form compounds that have high stability with most metals, and this is due tonitrogen (N) of azomethine group beside two oxygen (O) atoms of hydroxyl and methoxy groups. Ortho-vanillin Schiff base and its metal complexes are very important as antibacterial, antifungal, antioxidant and anticancer, Also, many available pharmaceutical researches predict how these compounds can interaction with DNA. Many efforts are made in the possibility of using Ortho-vanillin Schiff baseas catalyst, polymers, dyes, Analogues and pharmaceutical fields.  This review will try to shed light on the most used applications by researchers of Ortho-vanillin Schiff base compounds to stimulate more and more efforts to achieve maximum benefit from potential infinite number of compounds.

Graphical Abstract

Importance of the Applicability of O-Vanillin Schiff Base Complexes: Review

Keywords

[1] S.A. Abdel-Latif, H.B. Hassib, Y.M. Issa, Spectrochim. Acta A, 2007, 67, 950–957.
[2] K.A. Maher, S.R. Mohammed, Int. J. Curr. Rev., 2015, 7, 6.
[3] J. Devi, M. Yadav, D. Kumar, L.S. Naik, D.K. Jindal, Appl. Organomet. Chem., 2019, 33, e4693.
[4] S. Muche, K. Harms, A. Biernasiuk, A. Malm, Ł. Popiołek, A. Hordyjewska, M. Hołyńska, Polyhedron, 2018, 151, 465–477.
[5] M. Andruh, Dalton Trans., 201544, 16633–16653.
[6] V. Prakash, Int. J. Eng. Res. Sci., 2017, 3, 36–47.
[7] Z. Wang, J. Gao, J. Wang, X. Jin, M. Zou, K. Li, P. Kang, Spectrochim. Acta A, 2011, 83, 511–517.
[8] V.A. Joseph, J.J. Georrge, J.H. Pandya, R.N. Jadeja, J. Theor. Comput. Sci., 2015, 2, 136.
[9] N. Turan, K. Buldurun, B. Gündüz, J. Nanoelectron. Optoelectron., 2017, 12, 1028–1040.
[10] H. Cherif, D.G. Bisson, P. Jarzem, M. Weber, J.A. Ouellet, L. Haglund, J. Clin. Med., 2019, 8, 433.
[11] A. Thevenon, J.A. Garden, A.J. White, C.K. Williams, Inorg. Chem., 2015, 4, 11906–11915.
[12] Y. Anjaneyulu, R.P. Rao, Synth. React. Inorg. Met. Org. Chem., 1986, 16, 257–272.
[13] B.G. Tweedy, Phytopathology, 1964, 55, 910–914.
[14] J.H. Jorgensen, J.D. Turnidge, In Manual of Clinical Microbiology, 11th Edition, American Society of Microbiology., 2015, pp. 1253–1273.
[15] R.N. Patel, N. Singh, K.K. Shukla, V.L.N. Gundla, U.K. Chauhan, Spectrochim. Acta A, 2006, 63, 21–26.
[16] S. Manju, K. Rani, K. Vijayalakshmi , P.N. Sudha, IOSR J. Pharm., 2017, 1, 32–42.
[17] K.W. HenriL, J. Tagenine, B.M. Gupta , Indian J. Chem., 2001, 40, 999–1003.
[18] M.A. Neelakantan, M. Esakkiammal, S.S. Mariappan, J. Dharmaraja, , T. Jeyakumar, Indian J. Pharm. Sci., 2010, 72, 216.
[19] K. Rathore, R.K. Singh, H.B. Singh, E- J. Chem., 2010, 7, S566–S572.
[20] S. Norrihan, A. Md Abu, S. Md Abdus, B. A. Fasihuddin, A. Mohd Razip, Open J. Inorg. Chem.,2012, 2, 22–27.
[21] A.O. Sobola, G.M. Watkins, J. Serbian Chem. Soc., 2018, 83, 809–819.
[22] A.O. Sobola, G.M. Watkins, B. Van Brecht, S. Afr. J. Chem., 2014, 67, 45–51.
[23] B. Rizwana, S.S. Lakshmi, Int. J. Chemtech. Res., 2012, 4, 464–473.
[24] G.Y. Nagesh, U.D. Mahadev, B.H. M. Mruthyunjayaswamy, Int. J. Pharm. Sci. Rev. Res., 2015, 31, 190–197.
[25] M.D. Udayagiri, N.G. Yernale, B.H. Mathada, Int. J. Pharm. Pharm. Sci., 2016, 8, 1–8.
[26] A.M. Hassan, A. Osman Said, B.H. Heakal, A. Younis, M.A. Abdelmoaz, M.M. Abdrabou, Adv. J. Chem. A, 2020, 3, 621–638.
[27] A.M. Hassan, B.H. Heakal, A.O. Said, W.M. M. A. Aboulthana, Egypt. J. Chem., 2020, 63, 2533–2550.
[28] A. Malik, G. Goyat  , K. Vikas, K.K. Verma, S. Garg, Int. J. Chem. Sci., 2018, 16, 249.
[29] X. Li, C.H. Li, J. H. Jiang, H.W. Gu, D.L. Wei, L.J. Ye, J.L. Hu, S.X. Xiao, D.C. Guo, X. Li, H.  Zhang, J. Therm. Anal. Calorim., 2017, 127, 1767–1776.
[30] K. Das, C. Patra, C. Sen, A. Datta, C. Massera, E. Garribba, T. Askun, J. Biol. Inorg. Chem., 2017, 22, 481–495.
[31] R.K. Mohapatra, P.K. Das, M.M. El-ajaily, U. Mishra, D.C. Dash, Bull. Chem. Soc. Ethiop., 2018, 32, 437–450.
[32] B. Kavitha, M. Sravanthi, P.S. Reddy, J. Mol. Struct., 2019, 1185, 153–167.
[33] M. Sivasankaran Nair, S. Suda Kumari, M.A. Neelakantan, J. Coord. Chem., 2007, 60, 1291–1302.
[34] C. Jayabalakrishnan, K. Natarajan, Synth. React. Inorg. Met-Org. Nano-Met. Chem, 2001, 31, 983–995.
[35] M.A. Shaheen, W. Xiao, M. Aziz, A. Karim, M. Saleem, M. Mustaqeem, C. Lu, Russ. J. Gen. Chem., 2019, 89, 1691–1695.
[36] R.O. Shaibu, G.M. Watkins, Ife J. Sci., 2019, 21, 27–38.
[37] N. Turan, K. Buldurun, Y. Alan, A. Savci, N. Çolak, A. Mantarcı, Res. Chem. Intermed., 2019, 45, 3525–3540.
[38] M. Zubair, M. Sirajuddin, K. Ullah, A. Haider, F. Perveen, I. Hussain, M.N. Tahir, J. Mol. Struct., 2020, 1205, 127574.
[39] B. Anupama, M. Sunita, D.S. Leela, B. Ushaiah, C.G. Kumari, J. Fluoresc., 2014, 24, 1067–1076.
[40] S. Kumar, K.K. Aravindakshan, J. Pharm. Chem. Biol.  Sci., 2017, 5, 271–281.
[41] G.A. Al‐Hazmi, K.S. Abou‐Melha, N.M. El‐Metwaly, I. Althagafi, F. Shaaban, M.G. Elghalban, M.M. El‐Gamil, Applied Organomet. Chem., 2020, 34, e5408.
[42] A. Marton, E. Kusz, C. Kolozsi, V. Tubak, G. Zagotto, K. Buzás, C. Vizler, Anticancer Res., 2016, 36, 5743–5750.
[43] M.R. Rodríguez, J. Del Plá, L.M. Balsa, I.E. León, O.E. Piro, G.A. Echeverría, A.C. González-Baró, New J. Chem., 2019, 43, 7120–7129.
[44] M.R. Rodríguez, L.M. Balsa, J. Del Plá, J. García-Tojal, R. Pis-Diez, B.S. Parajón-Costa, A.C. González-Baró, New J. Chem., 2019, 43, 11784–11794.
[45] M.J. Niu, Z. Li, G.L. Chang, X.J. Kong, M. Hong, Q.F. Zhang, PloS one, 2015, 10, e0130922.
[46] H. Bahron, S.S. Khaidir, A.M. Tajuddin, K. Ramasamy, B. M. Yamin, Polyhedron, 2019, 161, 84–92.
[47] Z. Faghih, A. Neshat, A. Wojtczak, Z. Faghih, Z. Mohammadi, S. Varestan, Inorganica Chim. Acta, 2018, 471, 404–412.
[48] S.S. Khaidir, H. Bahron, A.M. Tajuddin, K. Ramasamy, S. Meng, Int. J. Eng. Technol, 2018, 7, 72–76.
[49] L. Subha, C. Balakrishnan, S. Thalamuthu, M.A. Neelakantan, J. Coord. Chem., 2015, 68, 1021–1039.
[50] E.N. Md Yusof, M. A.M. Latif, M.I.M. Tahir, J.A. Sakoff, M.I. Simone, A.J. Page, A. Veerakumarasivam, E.R. Tiekink, T. BSA Ravoof, Int. J. Mol. Sci., 2019, 20, 854.
[51] L. Zarei, Z. Asadi, M. Dusek, V. Eigner, J. Photochem. Photobiol. A, 2019, 374, 145–160.
[52] D. Majumdar, D.K. Singh, D.K. Pandey, D. Parai, K. Bankura, D. Mishra, J. Mol. Struct., 2020, 1209, 127936.
[53] A. De, H.P. Ray, P. Jain, H. Kaur, N. Singh, J. Mol. Struct.2020, 1199, 126901.
[54] B. Jing, J. Dong, Q. Wei, T. Xu, L. Li, Transit. Met. Chem., 2014, 39, 605–611.
[55] X.J. Chen, W.J. Hu, Y. Qin, G.L. Zhao, Asian J. Chem., 2013, 25, 6615.
[56] X. Li, J. H. Jiang, S.X. Xiao, H.W. Gu, C.H. Li, L.J. Ye, Q.G. Li, Thermochimica Acta, 2014, 575, 291–299.
[57] R.P. Singh, K.N. Chidambara Murthy, G.K. Jayaprakasha, J. Agric. Food Chem., 2002, 50, 81–86.
[58] H. Mitsuda,  Eiyo to shokuryo, 1966, 19, 210–221.
[59] M. Oyaizu, Jpn. J. Nutr. Diet., 1986, 44, 307–315.
[60] W. Wu, Y. Xuan, J.L. Yin, L. Shujie, Synth. React. Inorg. Met-Org. Nano-Met. Chem., 2014, 44, 877–880.
[61] E. Al-Abbad, F. Alakhras, I. Anastopoulos, D. Das, A. AL-Arfaj, N. Ouerfelli, A. Hosseini-Bandegharaei, Russ. J. Phys. Chem. A, 2020, 94, 748–755.
[62] S. Gao, Z. Cheng, X. Zhou, Y. Liu, J. Wang, C. Wang, D. Zhang, Chem. Eng. J., 2020, 394, 124896.
[63] M. Nikoorazm, A. Ghorbani-Choghamarani, M. Khanmoradi. RSC Adv., 2016, 6, 56549–56561.
[64] V.A. Neacşu, C. Maxim, A.M. Mădălan, M. Hillebrand, C. González-Arellano, S. Soriano, M. Andruh, Polyhedron, 2018, 150, 77–82.
[65] Y. Zou, W.L. Liu, C.S. Lu, L.L. Wen, Q.J. Meng, Inorg. Chem. Commun., 2004, 7, 985–987.
[66] N.P. Priya, S. Arunachalam, A. Manimaran, D. Muthupriya, C. Jayabalakrishnan, Spectrochim. Acta A, 2009, 72, 670–676.
[67] S. Sashikala, S.S. Shafi, Pharm. Lett., 2014, 6, 90–97.
[68] A.S. Amarasekara, A. Razzaq, Int. Sch. Res. Notices, 2012, 532171.
[69] I. Kaya, A. Bilici, M. Gül, Polym. Adv. Technol., 2008, 19, 1154–1163.