CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Author

Department of Chemical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box: 1469669191, Tehran, Iran

Abstract

In this paper, molecular diameter for various pure compounds are estimated by seven methods, in which three diameters are based on scaled particle theory (SPT) and the others are obtained from actual molecular volumes assuming hard sphere shape for molecules by using Bondi, Edward and Van der Veen methods. The seventh one is obtained from a relationship between molecular volume and parachor. Correlation among seven types of molecular sizes for pure components is reported. Calculated diameters are used to prediction surface tension of 108 pure compounds based on SPT. Calculation results show that the hard sphere diameter which is obtained from reported correlations can be used for estimation of pure substances surface tension with good accuracy.

Graphical Abstract

Correlation between Molecular Sizes of Pure Compounds: Application in Surface Tension Prediction Based on Scaled Particle Theory

Keywords

[1] J.M. Prausnitz, R. N. Lichtenthaler, E.G.D. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd Ed., Prentice-Hall: New Jersey, 1999.
[2] S. Glasstone, Textbook of Physical Chemistry, 2nd Ed., D. Van Nostrand Company: London, 1949.
[3] R. Tahery, H. Modarress, J. Satherley, J. Chem. Eng. Data, 2006, 51, 1039–1042.
[4] R. Tahery, J. Sol. Chem., 2017, 46, 1152–1164.
[5] R.K. Shukla, V. Dwivedi, A. Kumar, U. Srivastava, J. Non-Equilib. Thermodyn2010, 35, 235–249.
[6] S. Khosharay, M.S. Mazraeno, F. Varaminian, A. Bagheri, Int. J. Refrig., 2014, 47, 26–35.
[7] R. Tahery, J. Chem. Thermodyn., 2017, 106, 95–103.
[8] Ã. Pineiro, P. Brocos, A. Amigo, M. Pintos, R. Bravo, J. Chem. Thermodyn., 1999, 31, 931–942.
[9] R. Tahery, H. Modarress, J. Satherley, Chem. Eng. Sci., 2005, 60, 4935–4952.
[10] G. Zhao, S. Bi, J. Wu, Z. Liu, J. Chem. Eng. Data, 2010, 55, 3077–3079. 
[11] R. Tahery, H. Modarress, Iran. J. Sci. Technol. B, 2005, 29, 501–509.
[12] A.F. Azarbayjani, A. Jouyban, S. Yung Chan, J. Pharm. Pharmaceut Sci. 2009, 12, 218–228.
[13] K. Baker, D. Garbe, H. Surburg, Common Fragrance and Flavor Materials: Preparation Properties and Uses, 4th Ed., Wiley VCH: Weinheim, Germany, 2001.
[14] R.J. Hunter, L.R. White, Foundations of Colloid Science, Oxford University Press: New York, 1987.
[15] D.T. Wasan, M.E. Ginn, D.O. Shah, Surfactants in Chemical/Process Engineering, Marcel Dekker: New York, 1998.
[16] L.L.E. Schramm, Foams: Fundamentals and Applications in the Petroleum Industry, Advances in Chemistry Services, Vol. 242, American Chemical Society: Washington DC, 1994.
[17] N.N. Zaki, N.S. Ahmed, A.M. Nassar, Petrol. Sci. Technol., 2000, 18, 1175–1193. 
[18] T.M. Aminabhavi, M.I. Aralaguppi, G. Bindu, R.S. Khinnavar, J. Chem. Eng. Data, 1994, 39, 522–528. 
[19] D. Gomez-Diaz, J.C. Mejuto, J.M. Navaza, A. Rodriguez-Alvarez, J. Chem. Eng. Data, 2002, 47, 872–875.
[20] C.F. Wienaung, D.L. Katz, Ind. Eng. Chem., 1943, 35, 239–246.
[21] S. Murad, Chem. Eng. Commun., 1983, 24, 353–358.
[22] P. Rice, A. Teja, J. Coll. Int. Sci., 1982, 86, 158–163.
[23] Y.X. Zuo, E.H. Stenby, J. Coll. Int. Sci., 1996, 182, 126–132. 
[24] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford: UK, 1982.
[25] D. Henderson, Fundamentals of Inhomogeneous Fluids, Marcel Dekker: New York, 1992.
[26] F. Gharagheizi, A. Eslamimanesh, A.H. Mohammadi, D. Rchon, J. Chem. Eng. Data, 201156, 2587–2601.
[27] H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys., 1959, 31, 369–380.
[28] E. Helfand, H.L. Frisch, J. Chem. Phys., 1961, 34, 1037–1042.
[29] R. Tahery, H. Modarress, J. Satherley, 2004, Cell. Mol. Biol. Lett., 9, 129–132.
[30] S.W. Mayer, J. Phys. Chem., 1963, 67, 2160–2167.
[31] N. Nandi, I.N. Basumallick, Z. Phys. Chem., 1991, 173, 179–189.
[32] Z. Lei, R. Zhou, Z. Duan, Fluid Phase Equilib., 2002, 200, 187–201.
[33] R.A. Pierotti, Chem. Rev., 1976, 76, 717–726.
[34] E. Wilhelm, R. Battino, J. Chem. Thermodyn., 1971, 3, 761–768.
[35] N. Nandi, I.N. Basumallick, J. Phys. Chem., 1990, 94, 2537–2540.
[36] N. Nandi, N., I.N. Basumallick, J. Phys. Chem., 1993, 97, 3900–3903.
[37] N. Nandi, J. Mol. Struct.(Theochem), 1995, 332, 301–311.
[38] B. Baeyens, H. Verschelde, Z. Phys. B: Condens. Matter., 1997, 102, 255–259.
[39] B. Marongiu, S. Porcedda, L. Lepori, E. Matteoli, Fluid Phase Equilib., 1995, 108, 167–183.
[40] W. Zielenkiewicz, P. Zielenkiewicz, P.V. Lapshov, J. Therm. Anal. Calorim., 1995, 45, 775–779.
[41] E. Helfand, H. Reiss, H.L.  Frisch, J.L. Lebowitz, J. Chem. Phys., 1960, 33, 1379–1385.
[42] S.M. Latifi, H. Modarress, Phys. Chem. Liq., 2010, 48, 117–126.
[43] R. Tahery, J. Satherley, D.J. Schiffrin, J. Phys. Chem. B, 2007, 111, 5941–5945.
[44] R. Tahery, H. Modarress, Iran. J. Chem. Chem. Eng., 2007, 26, 1–8.
[45] H. Reiss, H.L. Frisch, E. Helfand, J.L. Lebowitz, J. Chem. Phys., 1960, 32, 119–124.
[46] A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
[47] H. Reiss, Adv. Chem. Phys., 1966, 9, 1–84.
[48] J.T. Edward, J. Chem. Educ., 1970, 47, 261–270.
[49] C.L. De Ligny, N.G. Van Der Veen, Chem. Eng. Sci., 1972, 27, 391–401.
[50] S. Sugden, J. Chem. Soc., 1924, 168, 1177–1180.
[51] R.H. Fowler, Proc. R. Soc. London, 1937, 159, 229–246.
[52] M.S. Telang, Curr. Sci., 1943, 14, 233–238.
[53] O.R. Quayle, Chem. Rev., 1953, 53, 439–589.
[54] J. Satherley, D.J. Schiffrin, J. Chem. Phys., 1992, 97, 2168–2169.
[55] J.J. Jasper, J. Phys. Chem. Ref. Data, 1972, 1, 841–1009.
[56] D.R. Lide, H.V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data, CRC Press: Boca Raton, 1994.
[57] N.B. Vargaftik, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 2nd Ed, Hemisphere Publishing Corporation, 1975.