SPC

Densities, Viscosities and Refractive Indices for Binary and Ternary Mixtures of Dimethylacetamide Dimethylbenzylamine + Dichloromethane

Pegah Paran ${ }^{1}$, Hossein Iloukhani ${ }^{* *}$ (i), Khatereh Khanlarzadeh ${ }^{2}$
${ }^{1}$ Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran ${ }^{2}$ RAC Analytical Chemistry Lab, Hamedan, Iran

ARTICLE INFO

Article history

Submitted: 30 April 2023
Revised: 14 July 2023
Accepted: 15 July 2023
Available online: 17 July 2023
Manuscript ID: AJCA-2304-1366
Checked for Plagiarism: Yes

DOI: 10.22034/AJCA.2023.395300.1366

K E Y W ORD S

Excess molar volumes
Tsao-Smith
Radjkovic
Kohler
Redlich-Kister
Cibulka

Abstract

Density (ρ), viscosity (η), and refractive index (n_{D}) for ternary systems include dimethylacetamide, dimethylbenzylamine, and dichloromethane, as well as the related binaries such as dimethylacetamide + dimethylbenzylamine, dimethylacetamide + dichloromethane, and dimethylbenzylamine + dichloromethane, were obtained at ambient pressure. Excess volumes, $V_{m}{ }^{\mathrm{E}}$, viscosity deviations $\Delta \eta$, and refractive index deviations Δn_{D} of the mixtures were obtained using the Redlich-Kister and the Cibulka relations for binary and ternary systems, respectively. Adopted values for coefficient and standard deviations were reported. The experimental data for ternary system were also fitted to Tsao-Smith, Radjkovic, and Kohler models. The intermolecular interactions were analyzed based on the experimental findings.

GRAPHICAL ABSTRACT

[^0]
Introduction

This research aims to test theories of the liquid state, understand intermolecular interactions, and predict solvent behavior. However, physicochemical properties such as excess functions depend upon various factors between like and unlike molecules. Here, we focus on measuring density, viscosity, and refractive index for selected systems [1-3]. The binary and ternary mixtures have been analyzed using RedlichKister and Cibulka relations, respectively $[4,5]$. Additionally, the experimental results for the ternary system fit the Tsao-Smith, Radjkovic, and Kohler models. These findings aim to contribute to the knowledge of thermodynamic properties in mixtures, which can ultimately aid in engineering design and operations.

Experimental

Chemicals

Dimethylcetamide (>99.5\%), dimethylbenzylamine (>99\%) and dichloromethane
(>99.5\%) were purchased from Merck. The purity was confirmed through GC, and their density and refractive index were compared to the literature data presented in Table 1 [6,7]. The chemicals were stored in opaque containers and were purified through fractional distillation before use.

Apparatus and Procedure

Density was taken using an Anton Parr DMA 4500 densimeter in static mode, with an estimated uncertainty of $\pm 1 \times 10^{-5} \mathrm{g.cm}^{-3}$. Refractive indices were measured using an Abbe refractometer with an uncertainty of $\pm 4 \times 10^{-5}$. Dynamic viscosities at 298.15 K were measured using an Ubbelohde viscometer, with an uncertainty of $\pm 10^{-3} \mathrm{mPa}$.s, and viscosity was expressed as [8]:
$\eta=\rho\left(k t-\frac{c}{t}\right)$
where k and c are viscometer parameters, and t is the time for flow.

Table 1. Comparison of Measured Densities,Viscosities, and Refractive Indices of the pure Components with Literature Values at 298.15 K

Component	$\rho\left(\mathrm{g.cm}^{-3}\right)$		η (mPa.s)		no	
	Exp	Lit ${ }^{\text {a }}$	Exp	Lit ${ }^{\text {a }}$	Exp	Lit ${ }^{\text {a }}$
dimethylacetamide	0.93636	0.9366	0.945	$0.943{ }^{\text {b }}$	1.4356	1.4357
dimethylbenzylamine	0.89503	0.8940	1.800	1.796	1.4985	1.4991
dichloromethane	1.31669	1.31610	0.423	0.400	1.4212	1.4220

${ }^{a} \operatorname{Ref}[6]{ }^{b} \operatorname{Ref}$ [7]
Standard uncertainties u are: $u(T)=0.01 \mathrm{~K}, u(P)=0.05 \mathrm{MPa}$, and expanded uncertainties U are: $U(\rho)=3 * 10-4$ $\mathrm{g} \cdot \mathrm{cm}^{-3}, U(\eta)=0.02$ (mPa.s) and $U\left(n_{\mathrm{D}}\right)=3 * 10^{-5}$ with 0.95 level of confidence

Results and discussion

The V_{m}^{E}, calculated as follows:
$V_{m}^{\mathrm{E}}=\sum_{i=1}^{N} x_{\mathrm{i}} M_{\mathrm{i}} \rho_{\text {mix }}^{-1}-\rho_{\mathrm{i}}^{-1}$
where ρ and M_{i} are density and molar mass, respectively. The resulting values of V_{m}^{E} for dimethylacetamide and dimethylbenzylamine demonstrated negative values throughout the
range of mole fractions, while for dimethylacetamide + dichloromethane and dimethylbenzylamine + dichloromethane showed a sign inversion in V_{m}^{E} over part of the concentration range ($x \cong 0.65$). Figure 1 displays V_{m}^{E} and density and V_{m}^{E} values have been presented (Table 2). The occurrence of favorable bipolar-bipolar intermolecular potential between unlike molecules due to their polarity is suggested to explain this observation. Additionally, the presence of alkyl groups with a positive inductive effect causes further intensification of this polarity since the negative charge congregates on the electronegative atoms. Consequently, there is a significant reduction in volume in this system. For the dimethyl acetamide + dichloromethane and dimethylbenzylamine + dichloromethane systems, a sign change from positive to negative in the zones ($x \cong 0.65$) occurred. This is because at higher concentrations of amide and amine, the molecules form cages, and dichloromethane molecules occupy the spaces between these molecules, leading to a contraction in volume. However, at high concentrations of
dichloromethane, undesirable interactions between dissimilar molecules lead to a positive deviation from the ideal state.
The viscosity deviations, $\Delta \eta$ was calculated using equation (3) [9]:

$$
\begin{equation*}
\Delta \eta=\eta-\sum_{i=1}^{N} x_{\mathrm{i}} \eta_{\mathrm{i}} \tag{3}
\end{equation*}
$$

where η and η_{i} are the viscosity of the mixture and pure components, respectively. Table 2 lists η and $\Delta \eta$ in binary systems and graphically showed in Figure 2. The results indicate that all systems exhibit negative $\Delta \eta$ values, with parabolic curves and the highest value observed within the x 0.5 zone. Negative $\Delta \eta$ values suggest that factors such as molecular size, shape, and spatial formation are also effective in addition to force and specific interactions among molecules. For instance, in the dimethylacetamide + dimethylbenzylamine system, the alkyl group and benzenoid loop's difference in shape and size leads to spatial inhibition, rendering the molecules unable to approach each other closely. As a result, the solution has a lower viscosity than each pure ingredient, resulting in negative viscosity deviation.

Figure 1. Variation of excess molar volume V_{m}^{E} with mole fraction $\boldsymbol{x}_{\mathbf{1}}$ for the binary systems at $T=$ 298.15K: \star dimethylacetamide + dimethylbenzylamine; \triangle dimethyl acetamide + dichloromethane $; *$ dimethylbenzylamine + dichloromethane. Solid curves were calculated from the Redlich-Kister equation

Figure 2. Variation of deviation in the viscosity $\Delta \eta$ with mole fraction x_{1} for the binary systems at $T=$ 298.15K: dimethylacetamide + dimethylbenzylamine; $\boldsymbol{\Delta}$-dimethylacetamide + dichloromethane ; $*$ dimethylbenzylamine + dichloromethane. Solid curves were calculated from the Redlich-Kister equation

Table 2. Experimental Densities ρ, Viscosities η,Refractive Indices n_{D}, Excess Molar Volumes $\boldsymbol{V}_{\boldsymbol{m}} \mathbf{E}$, Deviation in the Viscosity $\Delta \eta$, and Deviation in the Refractive Index Δn_{D} for the Binary Systems at 298.15 K

\boldsymbol{X}	$\rho\left(\mathrm{g.cm}^{-3}\right)$	η (mPa.s)	$\boldsymbol{n}_{\text {D }}$	$\begin{gathered} V_{m}{ }^{\mathrm{E}} \\ \left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\Delta \eta(\mathrm{mPa} . \mathrm{s})$	$\Delta n_{\text {D }}$
(x) dimethylacetamide + (1-x) dimethylbenzylamine						
0.0000	0.89503	1.795	1.4991			
0.1238	0.89910	1.664	1.4938	0.122-	0.021-	0.0026
0.2371	0.90290	1.558	1.4885	-0.187	-0.032	0.0044
0.2726	0.90413	1.524	1.4867	-0.202	-0.035	0.0049
0.3099	0.90546	1.490	1.4848	0.217-	0.037-	0.0054
0.4059	0.90894	1.404	1.4797	-0.234	-0.043	0.0063
0.4373	0.91013	1.376	1.4779	-0.238	-0.044	0.0065
0.5260	0.91363	1.300	1.4727	-0.240	-0.045	0.0069
0.5816	0.91586	1.255	1.4692	0.227-	-0.044	0.0070
0.6847	0.92039	1.173	1.4622	-0.207	-0.039	0.0065
0.7563	0.92361	1.117	1.4569	-0.168	-0.033	0.0058
0.8231	0.92690	1.071	1.4517	-0.137	-0.023	0.0048
0.8858	0.93010	1.026	1.4464	-0.096	-0.015	0.0035
1.0000	0.93636	0.945	1.4357			

Table 2. Continued...
$x \quad \rho\left(\mathrm{g.cm}^{-3}\right) \quad \eta(\mathrm{mPa} . \mathrm{s}) \quad n_{\mathrm{D}} \quad \underset{\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)}{V^{\mathrm{E}}} \quad \Delta \eta(\mathrm{mPa} . \mathrm{s}) \quad \Delta n_{\mathrm{D}}$
(x) dimethylacetamide $+(1-x)$ dichloromethane

0.0000	1.31669	0.423	1.4220			
0.0890	1.26865	0.458	1.4241	0.056	$0.011-$	0.0009
0.1117	1.25675	0.468	1.4245	0.083	$0.013-$	0.0010
0.1338	1.24540	0.478	1.4249	0.109	$0.015-$	0.0011
0.2232	1.20220	0.516	1.4265	0.180	$0.024-$	0.0014
0.3578	1.14324	0.578	1.4287	0.260	$0.032-$	0.0018
0.3806	1.13403	0.588	1.4291	0.262	$0.033-$	0.0019
0.4938	1.09118	0.646	1.4306	0.230	$0.035-$	0.0018
0.5849	1.06000	0.694	1.4317	0.137	$0.034-$	0.0017
0.6986	1.02405	0.758	1.4330	-0.017	$0.030-$	0.0014
0.8141	0.99020	0.828	1.4341	-0.165	$0.021-$	0.0009
0.8601	0.97686	0.857	1.4345	-0.180	$0.015-$	0.0007
0.9298	0.95698	0.901	1.4351	-0.161	$0.008-$	0.0004
0.9766	0.94350	0.930	1.4355	-0.090	-0.003	0.0001
1.0000	0.93636	0.945	1.4357			

(x dimethylbenzylamine $+(\mathbf{1}-\boldsymbol{x})$ dichloromethan						
0.0000	1.31669	0.423	1.4220			
0.0319	1.28466	0.451	1.4274	0.093	-0.016	0.0029
0.0655	1.25450	0.478	1.4326	0.153	$0.035-$	0.0055
0.1178	1.21295	0.523	1.4405	0.202	$0.061-$	0.0094
0.1348	1.20048	0.539	1.4428	0.219	$0.069-$	0.0104
0.1922	1.16237	0.591	1.4499	0.239	$0.095-$	0.0131
0.2526	1.12710	0.653	1.4564	0.251	$0.115-$	0.0149
0.3170	1.09440	0.724	1.4624	0.223	$0.133-$	0.0159
0.4096	1.05388	0.833	1.4697	0.169	$0.150-$	0.0161
0.5110	1.01649	0.964	1.4764	-0.090	$0.157-$	0.0150
0.6235	0.98178	1.130	1.4830	-0.039	-0.146	0.0129
0.7152	0.95692	1.269	1.4874	-0.082	$0.132-$	0.0103
0.7811	0.94095	1.376	1.4903	-0.120	$0.115-$	0.0081
0.9226	0.91007	1.633	1.4960	-0.074	-0.052	0.0029
1.0000	0.89503	1.795	1.4991			

Equation (4) defines the deviation in refractive index, Δn_{D} [10]:

$$
\begin{equation*}
\Delta n_{\mathrm{D}}=n_{D}-\sum_{i}^{n} x_{\mathrm{i}} n_{D_{\mathrm{i}}} \tag{4}
\end{equation*}
$$

where n_{D} and $n_{D_{\mathrm{i}}}$ are the refractive index of mixtures and pure components, respectively. Across all composition ranges studied Δn_{D} was positive. Figure 3 displays Δn_{D} vs. mole fractions, and results are given in Table 2. In the case of the dimethylacetamide + dimethylbenzylamine system, the positive deviation in refractive index can be attributed to stronger bipolar-bipolar interactions between molecules, given the strong polarity of both molecules. These interactions result in increased electron density in the mixture, causing a decrease in the speed of light passing through and increasing the refractive index.
The increase in light speed in solutions with lower viscosity results in the positive deviation observed in the refractive index.
The $V_{m}^{E}, \Delta \eta$, and Δn_{D} calculated using the Redlich-Kister polynomial function to correlate data.

$$
\begin{equation*}
\Delta Q_{i j}=x_{i} x_{j} \sum_{k=0}^{m} A_{\mathrm{k}}\left(x_{j}-x_{i}\right)^{k} \tag{5}
\end{equation*}
$$

where ΔQ_{ij} shows to $V_{m}^{E}, \Delta \eta$ or $\Delta n_{D} A_{k}$ is an parameter and σ as standard deviation calculated as:

$$
\begin{equation*}
\sigma=\left[\sum_{i=1}^{n} \frac{\left(\Delta Q_{i}^{\exp }-\Delta \Delta i_{i}^{\text {aqu }}\right)^{2}}{(n-p)}\right]^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

where $\Delta Q_{i} \mathrm{i}^{\text {ep }}$ and $\Delta Q_{i^{c} \text { cal }}$ refer to the experimental and calculated value. n and p are the numbers of experimental points and several adjustable coefficients. Table 3 presents the values of the parameters A_{k} together with the standard deviation σ.
Densities, viscosities, refractive indices, excess molar volumes, deviations in viscosity, and refractive index for ternary mixtures of system
dimethylacetamide + dimethylbenzylamine + dichloromethane are presented in Table 4. The $V_{m}^{E}, \Delta \eta$, and Δn_{D} for the ternary system were correlated using the Cibulka equation (7):

$$
\begin{equation*}
\Delta Q_{123}=\Delta Q_{b i n}+x_{1} x_{2} x_{3} \Delta_{123} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta Q_{b i n}=\sum_{i=1}^{3} \sum_{j>i}^{3} \Delta Q_{i j} \tag{8}
\end{equation*}
$$

where ΔQ_{123} refers to $V_{m}^{E}, \Delta \eta$ and Δn_{D} for ternary mixtures. $\Delta Q_{i j}$ in equation (8) is the binary contribution of each $i-j$ pair to the $V_{m}^{E}, \Delta \eta$ and Δn_{D} given by Equation 5 with the parameters shown in Table 3. The ternary contribution term Δ_{123} was correlated as:

$$
\begin{equation*}
\Delta_{123}=B_{0}+B_{1} x_{1}+B_{2} x_{2} \tag{9}
\end{equation*}
$$

The ternary parameters B_{0}, B_{1} and B_{2} were extracted, and their values with standard deviations were given in Table 3.
The experimental results for V_{m}^{E}, of ternary system fitted to models such as Radjkovic [11], TSAO-Smith [12], and Kohler [13].
The Radjkovic model is defined as:

$$
\begin{align*}
& V_{123}^{\mathrm{E}}=V_{12}^{\mathrm{E}}+V_{13}^{\mathrm{E}}+V_{23}^{\mathrm{E}} \tag{10}\\
& V_{123}^{\mathrm{E}}=x_{1} x_{2}\left(\sum_{n=0}^{k} A_{12}(n)\left(x_{1}-x_{2}\right)^{\mathrm{n}}\right)+ \\
& x_{1} x_{3}\left(\sum_{n=0}^{k} A_{13}(n)\left(x_{3}-x_{1}\right)^{\mathrm{n}}\right) \\
& +x_{2} x_{3}\left(\sum_{n=0}^{k} A_{23}(n)\left(x_{2}-x_{3}\right)^{\mathrm{n}}\right) \tag{11}
\end{align*}
$$

A_{12}, A_{13} and A_{23} values are the adjustable parameters in binary systems.
The Tsao-Smith model is defined as:
$V_{123}^{\mathrm{E}}=\frac{v_{12}^{\mathrm{E}} x_{2}}{\left(1-x_{1}\right)}+\frac{v_{18}^{\mathrm{E}} x_{\mathrm{B}}}{\left(1-x_{1}\right)}+V_{23}^{\mathrm{E}}\left(1-x_{1}\right)$
The Kohler model is given by:

$$
\begin{align*}
& V_{123}^{\mathrm{E}}=V_{12}^{E}\left(x_{1}+x_{2}\right)^{2}+V_{13}^{E}\left(x_{1}+x_{3}\right)^{2}+ \\
& V_{23}^{E}\left(x_{2}+x_{3}\right)^{2} \tag{13}
\end{align*}
$$

Figure 3. Variation of deviation in the refractive index Δn_{D} with mole fraction $\boldsymbol{x}_{\mathbf{1}}$ for the binary systems at $T=298.15 \mathrm{~K}$: * dimethylacetamide + dimethylbenzylamine; © dimethylacetamide + dichloromethane $; *$ dimethylbenzylamine + dichloromethane. Solid curves were calculated from the Redlich-Kister equation

Table 3. Binary Coefficients of the Redlich-Kister Equation at 298.15 K and Ternary Coefficients of the Cibulka Equation for $V_{m}^{E}, \Delta \eta$, and Δn_{D} at 298.15 K

$\Delta Q_{i j}$	A_{0}	A_{1}	A_{2}	A_{3}	σ
(x) dimethylacetamide + (1-x) dimethylbenzylamine					
$V_{m}^{E}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.953	0.083	-0.1375	0.0576	3.1×10^{-3}
$\Delta \eta$ (mPa's)	-0.1812	-0.0218	0.014	0.0905	6.3×10^{-4}
$\Delta n_{\text {D }}$	0.0274	0.0067	0.0023	0.0004	3×10^{-5}
(x) dimethylacetamide $+(1-x)$ dichloromethane					
$V_{m}^{E}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	0.955	-1.055	-2.627	-1.376	9.1×10^{-2}
$\Delta \eta$ (mPa's)	-0.142	-0.008	0.021	0.025	2.3×10^{-4}
$\Delta n_{\text {D }}$	0.007	-0.001	0.001	-0.002	9.7×10^{-5}
(x) dimethylbenzylamine + (1-x) dichloromethan					
$V_{m}^{E}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	0.26	-1.675	0.576	-0.552	8.1×10^{-2}
$\Delta \eta$ (mPars)	-0.625	0.003	-0.024	-0.139	6.1×10^{-3}
$\Delta n_{\text {D }}$	0.062	-0.031	0.006	0.001	9.1×10^{-4}
ΔQ_{123}	Bo	B_{1}	B_{2}		σ
$V_{m}^{E}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	-1.81855	6.40231	0.460098		2×10^{-2}
$\Delta \eta$ (mPa's)	0.39927	-0.84597	-0.51009		4×10^{-3}
$\Delta n_{\text {D }}$	0.024273	0.027428	0.028409		3.8×10^{-4}

Table 4. Experimental Densities ρ, Viscosities η, Refractive Indices n_{D}, Excess Molar Volumes $V_{m} \mathrm{E}$, Deviation in the Viscosity $\Delta \eta$, and Deviation in the Refractive Index Δn_{D} for the Ternary System of Dimethylacetamide, Dimethylbenzylamine and Dichloromethane at 298.15 K

${ }^{1}$	\boldsymbol{X}_{2}	$\stackrel{\rho}{\left(\mathrm{g} . \mathrm{cm}^{-3}\right)}$	$\begin{gathered} \eta \\ \text { (mPa.s) } \end{gathered}$	$\boldsymbol{n}_{\text {D }}$	$\underset{\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)}{V_{\mathrm{m}^{\mathrm{E}}}}$	$\underset{\text { (mPa.s) }}{\Delta \eta}$	$\Delta n_{\text {D }}$
0.0505	0.0401	1.25193	0.480	1.4297	0.123	-0.024	0.0039
0.0512	0.0810	1.21815	0.513	1.4363	0.181	-0.047	0.0074
0.0530	0.2091	1.13308	0.636	1.4526	0.223	-0.101	0.0138
0.0538	0.2537	1.10870	0.684	1.4569	0.216	-0.114	0.0146
0.0554	0.3930	1.04590	0.846	1.4687	0.112	-0.144	0.0156
0.0558	0.4419	1.02730	0.907	1.4724	0.072	-0.150	0.0155
0.0577	0.5954	0.97760	1.124	1.4814	-0.059	-0.143	0.0127
0.0593	0.6485	0.96255	1.204	1.4840	-0.087	-0.136	0.0112
0.0614	0.8176	0.92170	1.496	1.4919	-0.140	-0.077	0.0060
0.0816	0.8546	0.91044	1.579	1.4931	-0.130	-0.055	0.0041
0.0614	0.8757	0.90948	1.604	1.4942	-0.115	-0.048	0.0038
0.1011	0.0401	1.22760	0.497	1.4306	0.146	-0.034	0.0041
0.1055	0.2090	1.11485	0.669	1.4527	0.210	-0.095	0.0131
0.1105	0.3933	1.03112	0.884	1.4689	0.080	-0.135	0.0151
0.1160	0.5948	0.96540	1.169	1.4810	-0.083	-0.128	0.0116
0.2025	0.0402	1.18161	0.548	1.4319	0.198	-0.036	0.0040
0.2063	0.1226	1.12695	0.621	1.4428	0.229	-0.078	0.0085
0.2108	0.2091	1.07980	0.717	1.4526	0.198	-0.102	0.0116
0.2154	0.2992	1.03898	0.827	1.4609	0.127	- 0.117	0.0129
0.2234	0.3855	1.00490	0.943	1.4676	0.042	-0.124	0.0128
0.2260	0.4910	0.97103	1.088	1.4747	-0.058	-0.125	0.0117
0.2311	0.5954	0.94185	1.259	1.4808	-0.143	-0.099	0.0097
0.2372	0.7035	0.91548	1.449	1.4861	-0.193	-0.059	0.0066
0.3032	0.0401	1.13975	0.592	1.4338	0.243	-0.044	0.0045
0.3165	0.2092	1.04701	0.781	1.4530	0.181	-0.094	0.0105
0.3316	0.3926	0.97651	1.025	1.4681	-0.021	-0.108	0.0113
0.3472	0.5951	0.91960	1.354	1.4805	-0.205	-0.063	0.0077
0.4045	0.0402	1.10088	0.641	1.4345	0.262	-0.049	0.0039
0.4128	0.1233	1.05573	0.733	1.4449	0.219	-0.074	0.0077
0.4221	0.2089	1.01680	0.841	1.4538	0.132	-0.087	0.0099
0.4314	0.2987	0.98253	0.968	1.4612	-0.015	-0.089	0.0103
0.4414	0.3933	0.95167	1.105	1.4681	-0.106	-0.086	0.0039
0.4513	0.4918	0.92400	1.268	1.4745	-0.209	-0.063	0.0084
0.5052	0.0402	1.06583	0.708	1.4359	0.218	-0.034	0.0039

Table 4. Continued...

\boldsymbol{x}_{1}	X_{2}	$\begin{gathered} \rho \\ \left(\mathrm{g} . \mathrm{cm}^{-3}\right) \end{gathered}$	$\begin{gathered} \eta \\ \text { (mPa.s) } \end{gathered}$	$n_{\text {D }}$	$\begin{gathered} V_{m}^{\mathrm{E}} \\ \left(\mathrm{~cm}^{3} \cdot \mathrm{~mol}\right. \\ \left.{ }_{1}\right) \end{gathered}$	$\begin{gathered} \Delta \eta \\ \text { (mPa.s) } \end{gathered}$	$\Delta n_{\text {D }}$
0.5272	0.2092	0.98891	0.908	1.4540	-0.030	-0.076	0.0086
0.5518	0.3931	0.92834	1.190	1.4682	-0.198	-0.059	0.0083
0.6060	0.0402	1.03378	0.750	1.4369	0.114	-0.044	0.0035
0.6321	0.2092	0.96300	0.982	1.4542	-0.099	-0.057	0.0074
0.6475	0.2984	0.93305	1.111	1.4617	-0.189	-0.058	0.0078
0.7073	0.0402	1.00415	0.810	1.4379	-0.036	-0.037	0.0031
0.7376	0.2093	0.93792	1.051	1.4546	-0.177	-0.043	0.0064
0.8583	0.0404	0.96244	0.911	1.4388	-0.187	-0.015	0.0019
0.8677	0.0809	0.94577	0.964	1.4433	-0.159	-0.020	0.0032
0.9089	0.0403	0.94850	0.938	1.4395	-0.153	-0.014	0.0019

Conclusion

Density, viscosity, and refractive index measurements were experimentally conducted for systems of dimethylacetamide, dimethylbenzylamine, and dichloromethane. Results showed that some solutions exhibited positive values for V_{m}^{E}, while others showed negative values. The strong bipolar-bipolar interactions between the molecules of dimethylacetamide + dimethylbenzylamine system resulted in a negative deviation, whereas undesirable interactions between dissimilar molecules in the dimethylacetamide + dichloromethane and dimethylbenzylamined + dichloromethane systems led to a positive deviation. The behavior of the solution was the result of these mutual effects. Negative values for viscosity deviation $\Delta \eta$ indicated that factors such as molecular size, the shape of the ingredients, and spatial formation of molecules, in addition to the existence of forces and specific interactions among the mixture's ingredients, were also important. Shape and size of the ingredients of the alkyl group and benzenoid loop caused spatial inhibition, preventing the molecules from becoming closer to each other. As a result, the
solution had a lower viscosity than each of the pure ingredients, leading to a negative viscosity deviation. Furthermore, the deviation values for the refractive index in all mole fractions were positive, with negative $\Delta \eta$ values confirming this observation.

Acknowledgment

The authors would like to thank Bu-Ali Sina University for providing financial support for conducting this study

Disclosure statement

The authors declare that they have no conflict of interest.

Orcid

Hossein Iloukhani (iD: 0000-0002-9097-7485

References

[1] H. Iloukhani, K. Khanlarzadeh, J. Chem. Eng. Data, 2006, 51, 1226-1231. [CrossRef], [Google Scholar], [Publisher]
[2] K. Khanlarzadeh, H. Iloukhani, J. Chem. Thermodyn., 2011, 43, 1583-1590. [CrossRef], [Google Scholar], [Publisher]
[3] H. Iloukhani, K. Khanlarzadeh, J. Chem. Eng. Data, 2011, 11, 4244-4252. [CrossRef], [Google Scholar], [Publisher]
[4] O. Redlich, A.T. Kister, Ind. Eng. Chem., 1948, 40, 345-348. [CrossRef], [Google Scholar], [Publisher]
[5] Y. Cibulka, Collect. Czech. Commun., 1982, 47, 1414-1419. [CrossRef], [Google Scholar], [Publisher]
[6] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, John Wiley \& Sons: New York, 1986. [Google Scholar]
[7] J. Lobos, I. Mozo, M.F. Regulez, J.A.Gonzalez, I. G. Fuente, J. C. Cobos, J. Chem. Eng. Data, 2006, 51, 623-627. [CrossRef], [Google Scholar], [Publisher]
[8] D. Farrington, A.A. Robert, J.W. Williyams, C.D. Cornwell, B. Paul, J.E. Harriman, Experimental Physical Chemistry, McGraw-Hill Edition, 1961.
[9] W.L. Weng, I.M. Shiah, J.T. Chen, J. Chin. Inst. Chem. Eng., 2005, 36, 281-287. [CrossRef], [Google Scholar], [Publisher]
[10] J. Canosa, A. Rodreguez, J. Tojo, J.Chem. Thermodyn., 2003, 35, 2021-2031. [CrossRef], [Google Scholar], [Publisher]
[11] N. Radojkovic, A. Tasic, D. Grozdanic, B. Djorjevic, M. Malic, J. Chem. Thermodyn., 1977, 9, 349-355. [CrossRef], [Google Scholar], [Publisher]
[12] C.C. Tsao, J.M. Smith, Chem. Eng. Progr. Symp. 1953, 7, 107-117. [Google Scholar], [Publisher]
[13] F. Kohler, Monatsh. Chem., 1960, 91, 738740. [CrossRef], [Google Scholar], [Publisher]

HOW TO CITE THIS ARTICLE

Pegah Paran, Hossein Iloukhani*, Khatereh Khanlarzadeh. Densities, Viscosities and Refractive Indices for Binary and Ternary Mixtures of Dimethylacetamide + Dimethylbenzylamine + Dichloromethane. Adv. J. Chem. A, 2023, 6(3), 324333.

DOI: 10.22034/AJCA.2023.395300.1366
URL: https://www.ajchem-a.com/article_175476.html

[^0]: * Corresponding author: Iloukhani, Hossein
 ® E-mail: Iloukhani@basu.ac.ir
 © 2023 by SPC (Sami Publishing Company)

