Document Type : Original Research Article


1 Department of chemistry, Faculty of Science, Alexandria University,Egypt.

2 Department of Chemistry, Faculty of Science, University of Alexandria, Alexandria, Egypt

3 Department of Chemistry, Faculty of Science, University of Alexandria

4 Professor of Physical Chemistry of Materials, Material Science Department, Institute of Graduate Studies &Research, University of Alexandria



We developed some Ultrafiltration (UF)  membranes based on polysulfone (PSF) and poly acrylic acid (PAA) mixture. The Ultrafiltration membraneswere prepared by the phase inversion technique using Dimethylformamide (DMF) as a solvent. Immobilization of PAA in PSF matrix was confirmed by Fourier transform infrared spectroscopy (FTIR). The membranes have an asymmetric structure, as revealed by scanning electron microscopy (SEM). Natural water from Mahmoudia canal (a subdivision of the Nile River) is used as feed water. The permeate flux reached 120.0 l/ The hydrophilicity measured by contact angle was enhanced by the addition of PAA to reach 66.00. The prepared membranes showed good tensile strength that reached 7.2 MPa. Turbidity rejection and dissolved organic carbon (DOC) rejection reached 98.4% and 65 %, respectively. These performances obtained at ambient operating conditions, make the fabricated membranes attractive for canal water treatment.

Graphical Abstract

Enhancing the performance of polysulfone ultrafiltration membranes by mixing with polyacrylic acid for canal water treatment


Main Subjects

[1]. H.G. Gorchev, G. Ozolins, WHO Chron., 1984, 38, 104–108.

[2]. S. Ringoir, Verh. K. Acad. Geneeskd. Belg., 1992, 54, 179–185; discussion 185–188.

[3]. J. Leentvaar, M. Rebhun, Water Res., 1982, 16, 655–662.

[4]. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, 2006.

[5]. R.A. Bergman, Desalinat., 1995, 102, 11–24.

[6]. I. Al-Mutaz, I.A. Al-Anezi, “Silica removal during lime softening in water treatment plant,” in International Conf. on Water Resources & Arid Environment, 2004, p. 1–10.

[7]. L.R.J. van Vuuren, G.J. Stander, M.R. Henzen, P.G.J. Meiring, S.H.V. van Blerk, Water Res., 1967, 1, 463–474.

[8]. S.R. Roalson, J.H. Kweon, D.F. Lawler, G.E. Speitel, J. Am. Water Work. Associat., 2003, 95, 97–109.

[9]. D. Purkayastha, U. Mishra, S. Biswas, J. Water Process Eng., 2014, 2, 105–128.

[10]. E.N. Lightfoot, Chem. Eng. Sci., 1996, 51, 325–326.

[11]. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Water Res., 2009, 43, 2317–2348.

[12]. I. Korus, K. Loska, Desalinat., 2009, 247, 390–395.

[13]. N.A. Ochoa, M. Masuelli, J. Marchese, J. Memb. Sci., 2006, 278, 457–463.

[14]. J.E. Yoo, J.H. Kim, Y. Kim, C.K. Kim, J. Memb. Sci., 2003, 216, 95–106.

[15]. B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, J. Memb. Sci., 2008, 325, 427–437.

[16]. F. Zhang, W. Zhang, Y. Yu, B. Deng, J. Li, J. Jin, J. Memb. Sci., 2013, 432, 25–32.

[17]. G. Kalaiselvi, P. Maheswari, S. Balasubramanian, D. Mohan, Desalinat., 2013, 325, 65–75.

[18]. M. Homayoonfal, A. Akbari, M.R. Mehrnia, Desalinat., 2010, 263, 217–225.

[19]. C.O. M’Bareck, Q.T. Nguyen, S. Alexandre, I. Zimmerlin, J. Memb. Sci., 2006, 278, 10–18.

[20]. C. Mbareck, Q.T. Nguyen, O.T. Alaoui, D. Barillier, J. Hazard. Mater., 2009, 171, 93–101.

[21]. H. Strathmann, K. Kock, P. Amar, R.W. Baker, Desalinat., 1975, 16, 179–203.

[22]. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, J. Memb. Sci., 1996, 113, 361–371.

[23]. A.F. Ismail, P.Y. Lai, Sep. Purific. Technol., 2003, 33, 127–143.

[24]. Y. Liu, X. Yue, S. Zhang, J. Ren, L. Yang, Q. Wang, G. Wang, Sep. Purific. Technol., 2012, 98, 298–307.

[25]. A. Alpatova, S. Verbych, M. Bryk, R. Nigmatullin, N. Hilal, Sep. Purific. Technol., 2004, 40, 155–162

[26]. S.J. Traina, J. Novak, N.E. Smeck, J. Environ. Quality, 1990, 19, 151.

[27]. J. Cho, G. Amy, J. Pellegrino, J. Memb. Sci., 2000, 164, 89–110.

[28]. J.L. Weishaar, G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, K. Mopper, Environ. Sci. Technol., 2003, 37, 4702–4708.