Document Type: Original Research Article

Authors

1 Department of Analytical chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65178638695, Hamadan, Iran

2 Department of chemistry, Faculty of Science, Urmia University, 5715175976, Urmia

Abstract

The present study aims to present a new convenient sensor for heavy metals, based on aggregation of citrate-capped- N, N' biphenyl hydrazine 1, 2 dicarbothioamide (PHCA) - modified- (AuNPs). This paper reports a procedure for sensitive and selective spectrophotometric methods for simultaneous determination of mercury (Hg22+) and cadmium (Cd2+). For this aim multivariate data including kinetic spectra of AuNPs were collected during aggregation process. The characterization of AuNPs was performed by transmission electron microscopy (TEM) and Infra-Red (IR) spectroscopy. Partial least square (PLS) regression as an efficient multivariate calibration method was employed to make a connection between the surface plasmon resonance (SPR) spectra of the generated AuNPs. The number of PLS latent variables was optimized by leave-one-out cross-validation utilizing prediction residual error sum of square (PRESS). The linear range was in the range of 3.33 × 10-5 - 3.33 × 10-6 mol L-1 and 2.0 × 10-5 - 1.0 × 10-6 mol L-1, the detection limit was 1.21×10-7 and 0.5 ×10-7 mol L-1 (n=5) for Hg22+and Cd2+, respectively. This method used successfully for simultaneous determination of Hg22+ and Cd2+ in West Azerbaijan regional waters namely Zarineh / Simineh rivers and Urmia Lake.

Graphical Abstract

Keywords

Main Subjects

[1]. K. Naeem, W. Yawar, P. Akhter, Asia-Pacific J. Chem. Engin., 2012, 7, 295-299. 

[2]. T. Davous, Standard Atomic Weights, Commission on Isotopic Abundances and Atomic Weights; 2nd ed., Springer: Dordrecht, London, 2013.

[3]. D.R. Lide, Magnetic susceptibility of the elements and inorganic compoundsCRC Handbook of Chemistry and Physics CRC Press; 86th ed., Boca Raton: FL, London, 2005.

[4]. H. Morrow, Cadmium and Cadmium Alloys, Encyclopedia of Chemical Technology; John Wiley & Sons: 2010.

[5]. A.F. Wells, Structural Inorganic Chemistry; 3d ed., Oxford Science Publications, 1962.

[6]. N. Greenwood Norman, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, 1997.

[7]. K. Brodersen, G. Göbel, G. Liehr, für anorg. Und allgem. Chem., 1989, 575, 145-149.

[8]. I.D. Brown, B.D. Cutforth, G.D. Colin, J.R. Gillespie, R.P. Ireland, J.E. Vekris, Can. J. Chem., 1974, 52, 791-794.

[9]. I.D. Brown, R.J. Gillespie, K.R. Morgan, Z. Tun, P.K. Ummat, Inorg. Chem., 1984, 26, 4506-4508.

[10]. S. Bakirdere, M. Yaman, Environ. Monit. Assess., 2008, 136, 401-410.

[11]. H.B. Ulusoy, M. Akcay, R. Gürkan, Talanta, 2011, 85, 1585-1588.

[12]. J. Sardans, F. Montes, J. Peñuelas, Spectrochim. Acta., 2010, 65, 97-99.

[13]. V.L. Atz, D. Pozebon, Atomic Spectr., 2009, 30, 82-88.

[14]. F. Chen, D.D. Xu, X.P. Tang, J. Cao, Y.T. Liu, J. Deng, Spect. And Spectr. Anal., 2012, 32, 239-241.

[15]. M. Bingöl, G. Yentür, B. Er, A.B. Öktem, Czech J. Food Sci., 2010, 28, 213-215.

[16]. S. Dilio, C. Majorani, F. Petrucci, N. Violante, O. Senofonte, Anal. Meth., 2010, 2, 2049-2055.

[17]. M.G. Minnich, D.C. Miller, P.J. Parsons, Spectrochim. Acta, 2008, 63, 389-390.

[18]. M. Yaman, M. Güneş, S. Bakirdere, Bull. Environ. Contaminal. Toxicol., 2003, 70, 437-439.

[19]. M. Yaman, S. Bakirdere, Microchim. Acta., 2003, 141, 47-49.

[20].B. Liu, H. Tan, Y. Chen, Microchim. Acta. 2013, 180, 331-333.

[21]. W. Chansuvarn, A. Imyim, Microchim. Acta.2012, 176, 65-68.

[22]. D. Vilela, M.C. Gonzalez, A. Escarpa, Anal. Chim. Acta.2012, 751, 24-26.

[23]. C.S. Weisbecker, M.V. Merritt, G.M. Whitesides, Langmuir, 1996, 12, 3763-3766.

[24]. S. Peschel, G.A. Schmid, Chem. Int. Ed. Engl., 1995, 34, 1442-1445.

[25]. P. Alivisatos, Nat. Biotechnol., 2004, 22, 47-49.

[26]. O. Abbas, C. Rebufa, N. Dupuy, A. Permanyer, J. Kister, Fuel., 2011, 98, 5-9.

[27]. K.M.G. Lima, I.M. Raimundo, M.F. Pimentel, Sens. Actuators B, 2011, 69, 160-165.

[28]. R.M. Balabin, E.I. Lomakina, R.Z. Safieva, Fuel, 2011, 90, 2007-2009.

[29]. A.R. Coscione, J.C, Andeade, R.J. Poppi, C. Mello, Anal. Chim. Acta, 2000, 423, 31-33.

[30]. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S.D.E. Jong, P.J. Lewi, Handbook of chemometrics and qualimet-rics. Part A.; Elsevier Science, 1997.

[31]. M. Bahram, T. Madrakian, S. Alizadeh, J. Pharm. Anal. 2017, 7, 411–416.

[32]. P. Khatri Om, K. Murase, H. Sugimura, Langmuir, 2008, 24, 3787-3789.  

[33]. J. Maat, R. Regeling, C.J. Ingham, Langmuir, 2011, 27, 13606-13608.

[34]. A.T. Yordanov, N.J. Wolf, E.M. Georgiev, H.F. Koch, O.M. Falana, D.M. Roundhill, Comments Inorg. Chem., 1999, 20, 163-165.

[35]. I. Kazanga, S. Tameni, A. Piccinotti, I. Floris, G. Zanchetti, A. Polettini, Forensic. Sci. Int., 2012, 215, 46-48.

[36]. J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz, J. Am. Chem. Soc., 2000, 122, 4640-4644.

[37]. G. Svela, Quantitative analysis of inorganic chemistry; Vogel, six ed., University of science and Technology: Tehran, Iran, 2010.

[38]. T. Madrakian, A. Afkhami, M. Borazjani, M. Bahram, Spectrochimica Acta. Part A, 2005, 61, 2988-2990.

[39]. J. Sardans, F. Montes, J. Peñuela, Spectrochimica Acta Part B, 2010, 65, 97-99.

[40]. B. Benes, V. Spĕvácková, J. Smíd, Cent. Eur. J. Public. Health.2002, 10, 3-5.

[41]. J. Retka, A. Maksymowicz, D. Karmasz, accum. food crops.2011, 4, 373-375.

[42]. S.M. Mai, D. Pozebona, A. José Curtius, J. Anal. Spectrom.2003, 18, 330-335.