Document Type : Original Research Article


1 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh

2 Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh

3 Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh



As the morpholine and morphine have been used all over the world as pain killer drugs even used in cancer treatment, so the morpholine is more demanding chemical molecule. In our work, the morpholine has included the addition of inorganic anions like nitrate and nitrite for forming morpholinium based Ionic Liquid. Their chemical properties, biochemical properties, and physio-chemical properties are evaluated using computational chemistry through the Density Functional Theory (DFT). The biological properties have been shown that biological activity in the designed ionic liquid for uses in new drug discovery. From QSAR study, the value of the LogP is 0.713 and 1.7 which indicates hydrophobic nature and PIC50 is -2.14 and -3.96 respectively. The nitrate and nitrite comparison have been highlighted through this work. From QSAR and PIC50, it is seen that due to the nitrate addition with morpholine is more biological activity than nitrite. On the other hand, the toxicity of nitrate is less than nitrite.

Graphical Abstract

The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study


Main Subjects

[1]. L. Martini, J.L. Whistler, Curr. Opin Neurobiol., 2007, 17, 556-564.

[2]. W.D. Bowen, S. Gentleman, M. Herkenham, C.B. Pert, Proc. Natl. Acad. Sci. U. S. A., 1981, 78, 4818-4822.

[3]. T.J. Coderre, A.L. Vaccarino, R. Melzack, Brain Res., 1990. 535(1): p. 155-158.

[4]. T.J. Coderre, J. Katz, A.L. Vaccarino, R. Melzack, Pain., 1993, 52259-285.

[5]. H.J. Groenewegen, F.T. Russchen, J. Comp. Neurol., 1984, 223, 347-367.

[6]. D. Van Der Kooy, R.F. Mucha, M. O'Shaughnessy, P. Bucenieks, Brain Res., 1982, 243, 107-117.

[7]. D.E. Monti, E. Egiziano, S. Burgalassi, P. Chetoni, C. Chiappe, A. Sanzone, S. Tampucci, Int. J. Pharm., 2017,  516, 45-51.

[8]. I. Newington, J.M. Perez-Arlandis, T. Welton, Org. Lett., 2007, 9, 5247-5250.

[9]. J.N.G. Pendleton, F. Brendan, Int. J. Antimicrobial Agents, 2015, 46, 131-139.

[10]. A.P.C. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, Chem, A Eur. J., 2004, 10, 3769-3774.

[11]. W.L. Hough, S. Marcin, H. Rodríguez, R.P.  Swatloski, S.K. Spear, D.T. Daly,  J. Pernak,  J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.H. Davis, R.D. Rogers, New J. Chem., 2007, 31, 1429-1436.

[12]. M.I. Hossain, A. Kumer, S.H. Begum, Asian J. Phys. Chem. Sci., 2018, 5, 1-9.

[13]. M.I. Hossain, A. Kumer, Asian J. Phys. Chem. Sci., 2017, 3, 1-13.

[14]. M.I. Hossain, A. Kumer, Asian J. Phys. Chem. Sci., 2018, 3, 1-10.

[15]. R. Car, P. Mark, Phys. Rev. Lett., 1985, 55, 2471.

[16]. W. Yang, Phys. Rev. Lett., 1991, 66, 1438.

[17]. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, In Two Volumes. 1953, Wiley.

[18]. M.P. Andersson, P. Uvdal, J. Phys. Chem. A, 2005, 109, 2937-2941.

[19]. C.J. Horowitz, D.B. Serot, Nuclear Phys. A, 1981, 368, 503-528.

[20]. A. Kumer, M. Sarker, S. Paul, Int. J. Chem. Technol., 2019, 3, 26-37

[21]. A. Kumer, M. Sarker, S. Paul, A. Zannat, Adv. J. Chem. Section A, 2019, 2, 190-202.

[22]. A. Howard, J. McIver, J. Collins, Hyperchem computational chemistry. Hypercube Inc., Waterloo, 1994.

[23]. L. Timofeeva, N. Kleshcheva, Appl. Microbial. Biotechnol., 2011, 89, 475-492.

[24]. Z. Almi, S. Belaidi T. Lanez, T. Noureddine, Int. Lett. Chem., Phys. Astronomy, 2014, 37, 113-124.