Document Type : Original Research Article


Department of Chemistry, Faculty of Science, Aswan University, Egypt



In this study low cost biochar adsorbent originated from camel bone was prepared by physically treatment, and examine the developed camel bone biochar for the removal of Cd2+ and Pb2+ from their solutions. The biochar adsorbent was characterized before and after development by XRD,SEM, FT-IR, and BET surface The bone sample was pyrolyzed at temperature 500,600, 800, and 900 °C. Adsorption efficiency of Pb and Cd were optimized at different parameters (pH,pH z, contact time , initial metal concentration , adsorbent dosage and temperature. Adsorption kinetic, isotherms, and thermodynamic models have been performed to confirm the adsorption technique.The results revealed that the effective pyrolysis temperature for camel bone was 800oC that suitable for the high removal of Cd and Pb.The maximum adsorption removal percentage for Cd and Pb were 99.4 and 99.89 % , respectively at constant contact time 1 h, 1 g dose, pH 5, and 10 mg/L intial metal concentration. The kinetic results of cadmium and lead adsorption obeyed a pseudo-second-order model and fitted well with the Langmuir isotherm.

Graphical Abstract

Adsorption of Cd(II) and Pb(II) Using Physically Pretreated Camel Bone Biochar


Main Subjects

[1]. P.K. Pandey, S. Choubey, Y. Verma, M. Pandey, S.S.K. Kamal, K. Chandrashekhar, Int. J. Environ. Res. Public Health, 2007, 4, 332-339.
[2]. J. Cha, M. Cui, M. Jang, S.H. Cho, D.H. Moon, J. Khim, Environ. Geochem. Health, 2011, 33, 81–89. 
[3]. Y.S. Ho, C.T. Huang, H.W. Huang, Process Biochem., 2002, 37, 1421-1430. 
[4]. Dupont, L., Bouanda, J., Dumoneau, J. and Applincourt M. J. Colloid Interface Sci., 2003, 263, 35-41.
[5]. I. Villaescusa, M. Martinez, N. Miralles, J. Chem. Technol. Biotechnol., 2000, 74, 812-816.
[6]. N. Feroze, M. Kazmi, W. Iqbal, S. Muhammad, J. Environ. Protect. Ecology, 201314, 85-98.
[7]. E.F. Nassar, D. Zageer, M.S. Khlaf, Orient. J. Phys. Sci., 2017, 2, 81-87 
[8]. C. Stötzel, F.A. Müeller, F. Reinert, F. Niederdraenk, J.E. Barralet, U. Gbureck, Colloids Surf B Biointerfaces., 2009, 74, 91-95.
[9]. A.A.  Alqadami, A.K. Moonis, O. Marta, R.S. Masoom, J. Byong-Hun, M. Khalid, J. Clean. Product., 2018, 178,293-304.
[10]. S. Hassan, N.S. Awwad, A.H.A. Aboterika, J. Hazard. Mater., 2008154, 992-7
[11].B.Ramavandi, M.Shamsi, N.Abdolahi, Pajouhan Scientific J., 2014, 12, 58-65
[12]. M.S. Onyango, Y. Kojima, O. Aoyi, E.C. Bernardo, H. Matsuda, J. Colloid Interface Sci., 2004, 279, 341-350.
[13]. J.C. Elliot, Structure and chemistry of the apatites and other calcium orthophosphates, Elsevier Science B.V Netherlands, 1994,  ISBN: 978-0-444-81582-8
[14]. K.H. Lim, T.T. Ten, M.H. Ibrahim, A. Ahmad, H.T. Chee, APCBEE Proced., 2012, 1, 96 – 102.
[15]. N.S. Kumar, K. Min, Chem. Eng. J., 2011, 168, 562-571.  
[16]. S.K. Nadavala, K. Swayampakula, V.M. Boddu, K. Abburi,  J. hazard. Mater., 2009, 162, 482-489.
[17]. P.K. Pandey, Y. Verma, S. Choubey, M. Pandey, K. Chandrasekhar, Bioresour. Technol., 2007, 99, 4420-4427.
[18]. N. Abdel-Ghani, G. Fouad, E.M. Zahran, Int. J. Environ. Sci. Technol., 2015, 12,211-222.
[19]. O. Keskinkan, M.Z.L. Goksu, M. Basibuyuk, C.F. Forster, Bioresour. Technol., 2004, 92, 197-200.
[20]. M.M Rao, A. Ramesh, G.P. Rao, K. Seshaiah, J. Hazard. Mater., 2006, 129, 123-129.
[21]. Q.S. Liu, T. Zheng, P. Wang, et al. Chem. Eng. J. 2010, 157, 348-356.
[22]. M.A.P. Cechinel, S.M.A.G.U. Souza, A.A.U. Souza, J. Clean. Product., 2014, 65, 342-349
[23]. Y.S. HO, G. Mckay, Process Biochem., 1999, 34, 451-465.
[24]. Weber Jr., W.J., Morris, J.C. and Sanit, J. Journal Sanitary Engeering Division Proceedings.AmericanSociety of Civil Engineers, 1963, 89, 31-38.
[25]. H. Aydın, B. Yasemin, Y. Cigdem, J. Hazard. Mater., 2007144, 300-306.
[26]. P. Sivakumar, P.N. Palanisamy, Indian J. Chem. Technol., 2011, 18, 188-196.
[27]. M.S. Venkata, N.C. Rao, J. Karthikeyan, J. Hazard. Mater., 2002, 90, 189–204.