Document Type : Original Research Article


Synthesis and Molecular Simulation Laboratory, Chemistry Department, Pars Isotope Company, P.O. Box: 1437663181, Tehran, Iran



In this study, the electronic properties of the novel medicinal compound 3-(1,3-dioxoisoindolin-2-yl) benzyl nitrate as a treatment of sickle cell disease are obtained using density functional theory (DFT) method. In first step, the molecular structure of the title compound is optimized at B3LYP/6-311++G(d,p) level of theory at room temperature. Then, its stability and reactivity properties are calculated by frontier molecular orbitals (FMOs) energies. The global reactivity indices show this medicinal molecule is a more stable compound and the nitrogen atom of the nitrate group has positive charge. So, the nitrate group can quit nitric oxide molecule in binding to Phosphodiesterase-5 (PDE5) enzyme. On the other hand, the docking analysis of the ligand-enzyme complex shows the steric interactions play the main role in this complex formation. Also, the data shows the PDE5 residues containing Phe [A] 820, Gln [A] 817, Ile [A] 768, Val [A] 782, Gln [A] 775, Phe [A] 786, Ile [A] 778, Leu [A] 765, Met [A] 816, Ala [A] 767 and Tyr [A] 612 play main role in the ligand-enzyme complex formation.

Graphical Abstract

Molecular Modeling of 3-(1,3-Dioxoisoindolin-2-yl)benzyl Nitrate and its Molecular Docking Study with Phosphodiesterase-5 (PDE5)


Main Subjects

[1]. I. Benenson, S. Porter, Orthop. Nurs., 2018, 37, 221-227.
[2]. G.J. Kato, F.B. Piel, C.D. Reid, M.H. Gaston, K. Ohene-Frempong, L. Krishnamurti, W.R. Smith, J.A. Panepinto, D.J. Weatherall, F.F. Costa, E.P. Vichinsky, Nat. Rev. Dis. Primers., 2018, 4, 18010.
[3]. B. Musicki, S. Karakus, U. Anele, F. Silva, A. Burnett, J. Sex. Med., 2018, 15, S47.
[4]. J.D. La Favor, Z. Fu, V. Venkatraman, T.J. Bivalacqua, J.E. Van Eyk, A.L. Burnett, J. Proteome. Res., 2018, 17, 1031-1040.
[5]. S. AlDallal, N. AlDallal, A. Alam, Cogent Medicine, 2016, 3, 1268357.
[6]. P. Sundd, M.T. Gladwin, E.M. Novelli, Annu. Rev. Pathol-Mech., 2019, 24, 263-292.
[7]. A.J. Nardozza, M.R. Cabrini, Rev. Assoc. Med Bras., 2017, 63, 689-692.
[8]. S. Korkmaz‐Icöz, T. Radovits, G. Szabó, Br. J. Pharmacol., 2018, 175, 223-231.
[9]. U.A. Anele, A.L. Burnett, Sexual. Med. Rev., 2015, 3, 160-168.
[10]. B. Musicki, S. Karakus, W. Akakpo, F.H. Silva, J. Liu, H. Chen, B.R. Zirkin, A.L. Burnett, Andrology., 2018, 6, 184-191.
[11]. F.H. Silva, S. Karakus, B. Musicki, H. Matsui, T.J. Bivalacqua, J.L. Dos Santos, F.F. Costa, A.L. Burnett, J. Pharm. Exp. Ther., 2016, 359, 230-237.
[12]. M. Nabati, M. Kermanian, H. Mohammadnejad-Mehrabani, H.R. Kafshboran, M. Mehmannavaz, S. Sarshar, Chem. Method., 2018, 2, 128-140.
[13]. M. Nabati, M. Mahkam, Org. Chem. Res., 2016, 2, 70-80.
[14]. M. Nabati, J. Phys. Theor. Chem. IAU Iran, 2017, 14, 283-293.
[15]. M. Nabati, Chem. Method., 2017, 1, 121-135.
[16]. M. Nabati, J. Phys. Theor. Chem. IAU Iran, 2017, 14, 49-61.
[17]. M. Nabati, H. Sabahnoo, J. Med. Chem. Sci., 2019, 2, 118-125.
[18]. F. Yang, C. Wu, Z. Li, G. Tian, J. Wu, F. Zhu, J. Zhang, Y. He, J. Shen, Org. Process Res. Dev., 2016, 20, 1576-1580.
[19]. M. Nabati, Iran. Chem. Commun., 2019, 7, 324-334.
[20]. M. Nabati, H. Sabahnoo, E. Lohrasbi, M. Mazidi, Chem. Method., 2019, 3, 383-397.
[21]. M. Nabati, Chem. Method., 2018, 2, 223-238.
[22]. M. Nabati, Iran. J. Org. Chem., 2018, 10, 2457-2465.
[23]. M. Nabati, Asian J. Green Chem., 2019, 3, 258-270.
[24]. A. Kumer, N. Sarkar, S. Paul, A. Zannat, Adv. J. Cem. A, 2019, 2, 190-202.
[25]. M. Rahimi, S. Jamehbozorgi, H. Chermette, R. Ghiasi, M. Poor Kalhor, Iran. Chem. Commun., 2019, 7, 472-479.