CiteScore: 4.9     h-index: 21

Document Type : Review Article

Author

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics University of Science and Technology of China Hefei, Anhui 230026, P. R. China

10.33945/SAMI/AJCA.2020.1.8

Abstract

Research in the area of electrocatalytic reduction of CO2 to value-added products has grown briskly in the past few decades. This is due to the increasing amount of CO2 in the atmosphere and a steady rise in global fuel demand. Serious efforts are urgently needed to minimize to CO2 emission and enhance sources of global energy demand. Electrochemical reduction (ECR) of CO2 is considered to be the best solution which not only reduces the increasing CO2 accumulation but also produces valuable fuels and chemicals. Sluggish kinetics, high over potential, low selectivity, low durability and competitive side reactions are the focal issues, to overcome these problems an efficient electrocatalyst is needed. Here in this mini review we had tried to discuss the fundamental factors that greatly influences catalytic activity of the catalyst in the light of updated experimental and computational data, which include size, crystal plane, grain boundary, metal metal-oxide interface and finally a brief note on metal free catalyst and future perspective of ECR of CO2.

Graphical Abstract

Carbon Dioxide Electrochemical Reduction over Metal and Metal Free Nanostructures: Recent Progress and Future Perspective

Keywords

Main Subjects

[1]. Key World Energy Statistics,  International Energy Agency 2017, 35. http://www.iea.org/statistics/
[2]. M.S. Dresselhaus, I.L. Thomas, Nature, 2001, 414,332-337.
[3]. S. Chu, A. Majumdar, Nature, 2012, 488, 294-303.
[4]. J.G. Canadell, C. Le Quéré, M.R. Raupach, C. B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, G. Marland, Proc. Natl. Acad. Sci. USA, 2007, 104, 18866 -18870.
[5]. S.A. Marcott, J.D. Shakun, P.U. Clark, A. C. Mix, Science, 2013, 339, 1198-1201.
[6]. S.F. Tett, P.A. Stott, M.R. Allen, W.J. Ingram, J.F. Mitchell, Nature, 1999, 399, 569-572.
[7]. J.P. Smol, Nature, 2012, 483, S12- S15.
[8]. A.K. Tripati, C.D. Roberts, R.A. Eagle, Science, 2009, 326, 1394-1397.
[9]. O. Hoegh-Guldberg, P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, Science, 2007, 318, 1737-1742.
[10]. D. Coumou, S. Rahmstorf, Nat. clim. change, 2012, 2, 491-496.
[11]. K.A. Giles, S.W. Laxon, A.L. Ridout, Geophys. Res. Lett., 2008, 35, L22502.
[12]. D.B. Lobell, W. Schlenker, J. Costa-Roberts, Science, 2011, 333, 616-620.
[13]. G. Shaffer, S.M. Olsen, J.O.P. Pedersen, Nat. Geosci., 2009, 2, 105-109.
[14]. J.A. Church, N. J. White, Geophy. Res. Lett., 2006, 33, L01602.
[15]. C. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. Erasmus, M. F. De Siqueira, A. Grainger L. Hannah, Nature, 2004, 427(6970), 145-148.
[16]. D.R. Feldman, W.D. Collins, P.J. Gero, M.S. Torn, E.J. Mlawer, T.R. Shippert, Nature, 2015, 519, 339-343.
[17]. M. E. Mann, Proc. Natl. Acad. Sci. USA., 2009, 106, 4065-4066.
[18]. G.A. Olah, G.S. Prakash, A. Goeppert, J. Am. Chem. Soci., 2011, 133, 12881-12898.
[19]. S. Perathoner, G. Centi, Chemsuschem, 2014, 7, 1274-1282.
[20]. N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci., 2006, 103, 15729-15735.
[21]. D. Larcher, J.M. Tarascon, Nat. Chem., 2015, 7, 19-29.
[22]. M. Aresta, A. Dibenedetto, Dalton Trans., 2007, 28, 2975-2992.
[23]. K. Huang, C.L. Sun, Z.J. Shi, Chem. Soc. Rev., 2011, 40, 2435-2452.
[24]. M. Cokoja, C. Bruckmeier, B. Rieger, W.A. Herrmann F.E. Kühn, Ange. Chem. Int. Ed. Engl., 2011, 50, 8510-8537.
[25]. A.M. Appel, J.E. Bercaw, A.B. Bocarsly, H. Dobbek, D.L. DuBois, M. Dupuis, J.G. Ferry, E. Fujita, R. Hille, P.J.A. Kenis, C.A. Kerfeld, R.H. Morris, C.H.F. Peden, A.R. Portis, S.W. Ragsdale, T.B. Rauchfuss, J.N.H. Reek, L.C. Seefeldt, R.K. Thauer, G.L. Waldrop, Chem. Rev., 2013, 113, 6621-6658.
[26]. J. Albo, M. Alvarez-Guerra, P. Castano and A. Irabien, Green Chem., 2015, 17, 2304-2324.
[27]. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem. Soc. Rev., 2009, 38, 89-99.
[28]. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Ann. Rev. Phy. Chem., 2012, 63, 541-569.
 [29]. C. Costentin, M. Robert, J.M. Saveant, Chem. Soc. Rev., 2013, 42, 2423-2436.
[30]. A. Taheri Najafabadi, Int. J. Ene. Res., 2013, 37, 485-499.
[31]. I. Ridjan, B.V. Mathiesen, D. Connolly, N. Duić, Energy, 2013, 57, 76.-84.
[32]. J. Schneider, H. Jia, J.T. Muckerman, E. Fujita, Chem. Soc. Rev., 2012, 41, 2036-2051.
[33]. J.M. Savéant, Chem. Rev., 2008, 108, 2348-2378.
[34]. M. Rakowski Dubois and D. L. Dubois, Acc. Chem. Res., 2009, 42, 1974-1982.
[35]. H. Yoshio, K. Katsuhei, M. Akira, S. Shin, Chem. Lett., 1986, 15, 897-898.
[36]. H. Yoshio, S. Shin, Bull. Chem. Soc. Jap., 1982, 55, 660-665.
[37]. Y.I. Hori, Electrochemical CO2 reduction on metal electrodes. In Modern aspects of electrochemistry, Springer, New York, NY. 2008, pp. 89-189.
[38]. Y.J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal., 2014, 4, 3742-3748.
[39]. M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc., 1990, 137, 1772-1778.
[40]. K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem., 1995, 391, 141-147.
[41]. D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mat., 2016, 28, 3423-3452.
[42]. X. Ma, Z. Li, L.E.K. Achenie, H. Xin, J. Phy. Chem. Lett., 2015, 6, 3528-3533.
[43]. A.S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Ange. Chem. Int. Edi., 2015, 54, 10758-10762.
[44]. L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater., 2015, 25, 5360-5367.
[45]. Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett., 1985, 14, 1695-1698.
[46]. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochimica Acta, 1994, 39, 1833-1839.
[47]. P. Hirunsit, W. Soodsawang, J. Limtrakul, J. Phy. Chem. C, 2015, 119, 8238-8942.
[48]. J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F. Jiao, ACS Catal., 2015, 5, 4586-4591.
[49]. D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, R. Jin, ACS Appl. Mater. Interfaces, 2015, 7, 15626-15632.
[50]. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986–1989.
[51]. K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc., 2011, 133, 20863-20868.
[52]. C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min, Y.J. Hwang, J. Am. Chem. Soc., 2015, 137, 13844-13850.
[53]. G. Yin, M. Nishikawa, Y. Nosaka, N. Srinivasan, D. Atarashi, E. Sakai, M. Miyauchi, ACS Nano, 2015, 9, 2111-2119.
[54]. S. Anandan, M. Miyauchi, Electrochem., 2011, 79, 842-844.
[55]. O.A. Baturina, Q. Lu, M.A. Padilla, L. Xin, W. Li, A. Serov, K. Artyushkova, P. Atanassov, F. Xu, A. Epshteyn, T. Brintlinger, M. Schuette, G.E. Collins, ACS Catal., 2014, 4, 3682-3695.
[56]. R. Reske, M. Duca, M. Oezaslan, K.J.P. Schouten, M.T.M. Koper, P. Strasser, J. Phy. Chem. Lett., 2013, 4, 2410-2413.
[57]. X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Angew. Chem., 2016, 128, 8986 –8991.
[58]. W. Kim, H. Frei, ACS Catalysis, 2015, 5, 5627-5737.
[59]. S. Shoji, G. Yin, M. Nishikawa, D. Atarashi, E. Sakai, M. Miyauchi, Chem. Phy. Lett., 2016, 658, 309-314.
[60]. R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba, Y. Yamada, ECS Electrochem. Lett., 2012, 1, H17.-H19.
[61]. C.W. Li, M.W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231-7234.
[62]. Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Angew. Chem., 2015, 127, 855-859.
[63]. E. Baytok, T. Aksu, M.A. Karsli, H. Muruz, Turk. J. Vet. Anim. Sci., 2005, 29, 469-474.
[64]. I. Toyoshima, G.A. Somorjai, Catal. Rev., 1979, 19, 105-159.
[65]. J.P. Jones, G.K.S. Prakash, G.A. Olah, Isr. J. Chem., 2014, 54, 1451-1466.
[66]. E. Roduner, Chem. Soci. Rev., 2014, 43, 8226-8239.
[67]. D.C. Grenoble, M.M. Estadt, D.F. Ollis, J. Catal., 1981, 67, 90-102.
[68]. A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 251-258.
[69]. C. Shi, H.A. Hansen, A.C. Lausche, J.K. Norskov, Phys. Chem. Chem. Phys., 2014, 16, 4720-4727.
[70]. H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Nørskov, J. Phys. Chem. Lett., 2013, 4, 388-392.
[71]. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 14107-14113.
[72]. W. Zhu, Y.J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2014, 136, 16132-16135.
[73]. J.H. Koh, H.S. Jeon, M.S. Jee, E.B. Nursanto, H. Lee, Y.J. Hwang, B.K. Min, J. Phys. Chem. C, 2014, 119, 883-889.
 [74]. H. Mistry, R. Reske, Z. Zeng, Z.J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc., 2014, 136, 16473-16476.
[75]. W. Zhu, R. Michalsky, O.N. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.
[76]. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J.G. Chen, F. Jiao, Nat. commun., 2014, 5, 3242.
[77]. J. Rosen, G.S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D.G. Vlachos, F. Jiao, ACS Catal, 2015, 5, 4586-4591.
[78]. A. Salehi-Khojin, H.R.M. Jhong, B.A. Rosen, W. Zhu, S. Ma, P.J. Kenis, R.I. Masel, J. Phys. Chem. C, 2013, 117, 1627-1632.
[79]. T. Hatsukade, K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Phys. Chem. Chem. Phys., 2014, 16, 13814-13819.
[80]. J. Li, B. Li, H. Shao, W. Li, H. Lin, Catalysts, 2018, 8, 89.
[81]. R.W. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. Van Dillen, K.P. de Jong, J. Am. Chem. Soc., 2005, 127, 16675-16680.
[82]. A.A. Peterson, L.C. Grabow, T.P. Brennan, B. Shong, C. Ooi, D.M. Wu, C. W. Li, A. Kushwaha, A.J. Medford, F. Mbuga, Top. Catal., 2012, 55, 1276-1282.
[83]. H. Qian, M. Zhu, Z. Wu, R. Jin, Acco. Chem. Res., 2012, 45, 1470-1479.
[84]. J. Kleis, J. Greeley, N. Romero, V. Morozov, H. Falsig, A.H. Larsen, J. Lu, J. J. Mortensen, M. Dułak, K.S. Thygesen, J.K. Nørskov, K.W. Jacobsen, Catal. Lett., 2011, 141, 1067-1071.
[85]. S. Back, M.S. Yeom, Y. Jung, ACS Catal, 2015, 5, 5089-5096.
[86]. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang and X. Bao, J. Am. Chem. Soc., 2015, 137, 4288-4291.
[87]. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc., 2014, 136, 6978-6986.
[88]. G. Attard, C. Barnes, Oxford Chemistry Primers, 1998, 59. ISBN: 9780198556862
[89]. Y.C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, D.E. Polyansky, ACS Catal., 2015, 5, 5349-5356.
[90]. S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu, J.L. Luo, J. Am. Chem. Soc., 2017, 139, 2160-2163.
[91]. D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I. Woo, Angew. Chem. Int. Ed., 2016, 55, 9297-9300.
[92]. S. Back, M.S. Yeom, Y. Jung, J. Phy. Chem. C, 2018, 122, 4274-4280.
[93]. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature, 2016, 529, 68-71.
[94]. A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E. Stephens, M.W. Kanan, I. Chorkendorff, J. Am. Chem. Soc., 2015, 137, 9808-9811.
[95]. A. Eilert, F. Cavalca, F.S. Roberts, J.R. Osterwalder, C. Liu, M. Favaro, E.J. Crumlin, H. Ogasawara, D. Friebel, L.G. Pettersson, J. Phys. Chem. Lett., 2016, 8, 285-290.
[96]. D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S. Yeo, ACS Catal, 2015, 5, 2814-2821.
[97]. Y. Chen, M.W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986-1989.
[98]. S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734-1737.
[99]. A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom, P. Broekmann, ACS Catalysis, 2015, 5, 7498-7502.
[100]. M. Ma, B.J. Trześniewski, J. Xie, W.A. Smith, Angew. Chem. Int. Ed., 2016, 55, 9748-9752.
[101]. C.W. Li, J. Ciston, M.W. Kanan, Nature, 2014, 508, 504-507.
[102]. C.J. Stalder, S. Chao, M.S. Wrighton, J. Am. Chem. Soc., 1984, 106, 3673-3675.
[103]. S. Ghasemi, H. Karami, M.F. Mousavi, M. Shamsipur, Electrochem. Commun., 2005, 7, 1257-1264.
[104]. C.H. Lee, M.W. Kanan, ACS Catal, 2014, 5, 465-469.
[105]. Y. Lum, J.W. Ager, Angew. Chem. Int. Ed., 2018, 57, 551-554.
[106]. D. Kim, S. Lee, J.D. Ocon, B. Jeong, J.K. Lee, J. Lee, Phys. Chem. Chem. Phys., 2015, 17, 824-830.
 [107]. K. Mudiyanselage, S.D. Senanayake, L. Feria, S. Kundu, A.E. Baber, J. Graciani, A.B. Vidal, S. Agnoli, J. Evans, R. Chang, Angew. Chem. Int. Ed., 2013, 52, 5101-5105.
[108]. F. Ernst, Mater. Sci. Eng., 1995, 14, 97-156.
[109]. J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, Science, 2014, 345, 546-550.
[110]. Q. Fu, W.X. Li, Y. Yao, H. Liu, H.Y. Su, D. Ma, X.K. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang, X. Bao, Science, 2010, 328, 1141-1144.
[111]. J.A. Rodríguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Perez, Science, 2007, 318, 1757-1760.
[112]. D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, J. Am. Chem. Soc., 2017, 139, 5652-5655.
[113]. F. Yang, D. Deng, X. Pan, Q. Fu, X. Bao, National Sci. Rev., 2015, 2, 183-201.
[114]. K. Manthiram, Y. Surendranath, A.P. Alivisatos, J. Am. Chem. Soc., 2014, 136, 7237-7240.
[115]. A.N. Gavrilov, E.R. Savinova, P.A. Simonov, V.I. Zaikovskii, S.V. Cherepanova, G.A. Tsirlina, V.N. Parmon, Phys Chem Chem Phys, 2007, 9, 5476-5489.
[116]. S. Wang, S.P. Jiang, T. White, J. Guo, X. Wang, J. Phys. Chem. C, 2009, 113, 18935-18645.
[117]. X. Feng, K. Jiang, S. Fan, M.W. Kanan, J. Am. Chem. Soc., 2015, 137, 4606-4609.
[118]. X. Min, Y. Chen, M.W. Kanan, Phys. Chem. Chem. Phys., 2014, 16, 13601-13604.
[119]. Z. Xu, E. Lai, Y. Shao-Horn, K. Hamad-Schifferli, Chem. Commun., 2012, 48, 5626-5628.
[120]. H. Hansen, C. Shi, A. Lausche, A. Peterson, J. Nørskov, Phys. Chem. Chem. Phys., 2016, 18, 9194-9201.
[121]. M. Watanabe, M. Shibata, A. Kato, M. Azuma, T. Sakata, J. Electrochem. Soc., 1991, 138, 3382-3389.
[122].  S. Lee, G. Park, J. Lee, ACS Catalysis, 2017, 7, 8594-8604.
[123]. W. Zhao, L. Yang, Y. Yin, M. Jin, J. Mater. Chem. A, 2014, 2, 902-906.
[124]. J. K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nature chem., 2009, 1, 37-46.
[125]. R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T. Koper, J. Phys. Chem. Lett., 2015, 6, 4073-4082.
[126]. R. Chaplin, A. Wragg, J. Appl. Electrochem., 2003, 33, 1107-1129.
[127]. A.T. Garcia-Esparza, K. Limkrailassiri, F. Leroy, S. Rasul, W. Yu, L. Lin, K. Takanabe, J. Mater. Chem. A, 2014, 2, 7389-7401.
[128]. G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan, A. Yamaguchi, M. Miyauchi, J. Mater. Chem. A, 2017, 5, 12113-12119.
[129]. S. Rasul, D.H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, K. Takanabe, Angew. Chem. Int. Ed., 2015, 54, 2146-2150.
[130]. H.K. Lim, H. Shin, W.A. Goddard, Y.J. Hwang, B.K. Min, H. Kim, J. Am. Chem. Soc., 2014, 136, 11355-11361.
[131]. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim Acta, 1994, 39. 1833-1839.
[132]. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev., 2014, 43, 631-675.
[133].  S. Lin, C.S. Diercks, Y.B. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi, Science, 2015, 349. 1208-1213.
[134]. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, Nature Commun., 2014, 5, 4470.
[135]. J. Wu, R. M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary, L. Ma, X. Zou, X.D. Zhou, B.I. Yakobson, J. Lou, ACS Nano, 2015, 9, 5364-5371.
[136]. J. Wu, M. Liu, P.P. Sharma, R.M. Yadav, L. Ma, Y. Yang, X. Zou, X.D. Zhou, R. Vajtai, B.I. Yakobson, Nano letters, 2015, 16, 466-470.
[137]. B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-Khojin, Nat. commun., 2013, 4, 2819.
 [138]. S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P.J. Kenis, J. Power Sources, 2016, 301, 219-228.
[139]. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. Sci., 2012, 5, 7050-7059.
[140]. Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 2309-2326.
[141]. C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, L.A. Curtiss, J. Am. Chem. Soc., 2015, 137, 8676-8679.
[142]. C. Liu, H. He, P. Zapol, L.A. Curtiss, Phys. Chem. Chem. Phys., 2014, 16, 26584-26599.
[143]. S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc. 2014, 136, 7845-7848.
[144].  N. Sreekanth, M.A. Nazrulla, T.V. Vineesh, K. Sailaja, K.L. Phani, Chem. Commun., 2015, 51, 16061-16064.
[145].  J. Wu, S. Ma, J. Sun, J.I. Gold, C. Tiwary, B. Kim, L. Zhu, N. Chopra, I.N. Odeh, R. Vajtai, A.Z. Yu, R. Luo, J. Lou, G. Ding, P.J.A. Kenis, P. M. Ajayan, Nat. Commun., 2016, 7, 13869.
[146]. Y. Liu, J. Zhao, Q. Cai, Phys. Chem. Chem. Phys., 2016, 18, 5491-5498.
[147]. Y. Song, W. Chen, C. Zhao, S. Li, W. Wei, Y. Sun, Angew. Chem. Int. Ed., 2017, 56, 10840-10844.
[148]. X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv. Mater., 2017, 29, 1701784.
[149]. D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, ACS Nano, 2017, 11, 4825-4831.
[150]. D. Gao, F. Scholten, B. Roldan Cuenya, ACS Catalysis, 2017, 7, 5112-5120.
[151]. M.S. Faber, S. Jin, Energy Environ. Sci., 2014, 7, 3519-3542.
[152]. Q. Lu, J. Rosen, F. Jiao, ChemCatChem, 2015, 7, 38-47.
[153].    Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.C. Idrobo, S.J. Pennycook, H. Dai, Nat. nanotechnol., 2012, 7, 394-400.
[154].    T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai, Y. Harada, M. Saito, M. Oshima, M.I. Trioni, G.F. Tantardini, J. Nakamura, Phys. Rev. B, 2012, 86, 035436.
[155]. B. Li, X. Sun, D. Su, Phys. Chem. Chem. Phys., 2015, 17, 6691-6694.
[156]. X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu, B. Han, Chem. Sci., 2016, 7, 2883-2887.
[157]. H. Liu, Y. Liu, J. Li, Phys. Chem. Chem. Phys., 2010, 12, 1685-1697.
[158]. B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. Kenis, R.I. Masel, Science, 2011, 334, 643-634.
[159]. G.R. Zhang, B.J. Etzold, J. Energy Chem., 2016, 25, 199-207.