Document Type : Original Research Article


1 Chemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune – 411008, India

2 Department of Chemistry, Ramnarain Ruia College, Matunga, Mumbai



A novel method developed for the synthesis of resol based phenol-aniline-formaldehyde (PAF) resins by in situ generation of ammonia using magnesium hydroxide and ammonium chloride as reagents in the presence of phenol, aniline and formaldehyde. The synthesized PAF resol resins were characterized by IR, NMR spectroscopic methods, thermal stability by thermogravimetric analysis (TGA) and thermal properties by differential scanning colorimerty (DSC). Free phenol and free aniline of PAF resins were determined using gas chromatography and also these resins characterized for elemental analysis, inherent viscosity, molecular weight and gel time. DSC results illustrated that the glass transition temperatures of PAF resins exhibited in the range of 72-110 °C, whereas TGA results depicted that the thermal stability of the PAF resins revealed in the range of 516-548 °C. In situ generation of ammonia showed higher thermal stability and lower content of free phenol and free aniline in PAF resin.

Graphical Abstract

In Situ Generation of Ammonia: an Efficient Catalyst for the Synthesis of Phenol-Aniline-Formaldehyde Resol Resin


Main Subjects

[1] (a) A. Pizzi, Advanced Wood Adhesives Technology, Marcel Dekker, New York, Basel, 1994; (b) G. Brode,  In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 17, Wiley, New York, 1981, pp. 384-416.

[2] A. Knop, L. Pilato, Phenolic Resins-Chemistry, Applications and Performance, Spinger-Verlag, Berlin, Germany, 1985, 68.

[3] (a) G. Astarloa-Aierbe, J. Echeverria, A. ázquez, I. Mondragon, Polymer, 2000, 41, 3311–3315; (b) G.N. Manikandan, K. Bogeshwaran, Int. J. ChemTech Res., 2016, 9, 30–37; (c) W.J. Lee, C.L. Kang, K.C. Chang, Y.C. Chen, Holzforschung, 2012, 66, 67–72.

[4] (a) G. Astarloa-Aierbe, J. Echeverria, M. Martin, A. Exteberria, I. Mondragon, Polymer, 2000, 41, 6797–6802; (b)  L. Uyigue, E. Kubiangha, IOSR J. Engg. (IOSRJEN), 2018, 8, 14.

[5] P. Kopf, Phenolic Resins: Encyclopedia of Polymer Science and Technology, 2002, 7, 322.

[6] L. Pilato, Phenolic Resins: A Century of Progress, Springer, Verlag Berlin Heidelberg, 2010, ISBN 978-3-642-04713-8   

[7] S. So, A. Rudin, J. Appl. Polym. Sci., 1990, 41, 205–232.

[8] (a) M.F. Grenier-Loustalot, S. Larroque, P. Grenier, Polymer 1996, 37, 639–650; (b) K. Srivastava, C. Kumar, D. Srivastava, S. Tripathi. Macromolecul. Ind. J., 2007, 3, 176.

[9] T. Holopainen, L. Alvila, J. Rainio, T.T. Pakkanen, J. Appl. Polym. Sci., 1997, 66, 1183–1193.

[10] B. Me´chin, D. Hanton, J. Le Goff, J. Tanneur, Eur. Polym. J., 1986, 22, 115–124.

[11] N. Meyer, M. Cousin, 1985, US Patent 4, 555, 544 A.

[12] (a) H. Bender, N. Bloomfield, 1934, US Patent 1,955,731; (b) Peep Christjanson, Tõnis Pehk, and Jane Paju, Proc. Estonian Acad. Sci., 2010, 59, 225–232.

[13] V. Studentsov, S. Artemenko, Vysokomol. Soyed., 1976, A18, 443.

[14] A. Ingrassia, Laurel, Miss., 1954, US Patent 2,666,037.

[15]. H. Daibor and J. Kiihr, 1966, US Patent 3,256,222

[16] (a) K. Jellinek, R. Miller; G. Wisomirski, 1987, US Patent 4,663,418; (b) Y. Chen, D. Fan, T. Quin, F. Chu, BioResourses, 2014, 9, 4063–4075; (c) J. Wang, Y. Zhang, Polymer-Plastics Tech. Engg., 2012, 51, 1213–1217.

[17] N. Isamu, J. Appl. Polym. Sci., 1976, 20, 799–807.

[18] F. Dong-Bin, L. Gai-Yun, Q. Te-Fu, C. Fu-Xiang, Polymers, 2014, 6, 2221–2231.

[19] D. Fraser, R. Hall, A. Raum, J. Appl. Chem., 1957, 7, 676.

[20] J. Huang, M. Xu, Q. Ge, M. Lin, Q. Lin, Y. Chen, J. Chu, L. Dai, Y. Zou, J. Appl. Polym. Sci., 2005, 97, 652–658.

[21] J. Reynolds, M. Irwin, Chem. and Ind., 1948, 419.

[22] V. Erä, H. Salo, T. Kaps, J. Lindberg, Angew Makromol. Chem., 1975, 48, 185.

[23] R. Ebewele, B. River, J. Koutsky, J. Appl. Polym. Sci., 1986, 31, 2275–2302.

[24] G. Carotenuto, L. Nicolais, J. Appl. Polym. Sci., 1999, 74, 2703–2715.

[25] R. Samal, B. Senapati, T. Behuray, J. Appl. Polym. Sci, 1996, 62,655–660.

[26] B. Furniss, A. Hannaford, P. Smith, and A. Tatchell, Vogel’s Text Book of Practical Organic Chemistry; Addison Wesley Longman Ltd. England, First ISE Reprint, 1998.

[27] A. Pizzi, H. Pasch, C. Simon, K. Rode, J. Appl. Polym. Sci., 2004, 92, 2665–2674.

[28] T. Fisher, P.  Chao, C.G. Upton, A.J. Day, Magn. Reson. Chem., 1995,33, 717–723.

 [29] B.T. Ottenbourgs, P.J. Adriaensens, B.J. Reekmans, R.A. Carleer, D.J. Vanderzande, J.M. Gelan, Ind. Eng. Chem. Res., 1995, 34, 1364–1370.

[30] H. Pasch, P. Goetzky, E. Grundemann, H. Raubach, Acta. Polym. 1981, 32, 14–18.

[31] T. Amra, Ph D Thesis: Flexibilizition of phenolic resin, The Technical University of Denmark, Department of Chemical Engineering, Lyngby, 2004.

[32] A.W. Christiansen, L. Gollob, J. Appl. Polym. Sci., 1985, 30, 2279–2289.

[33] M.A. Khan, S.M. Ashraf, V.P. Malhotra, J. Appl. Polym. Sci., 2004, 92, 3514–3523.