CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

10.33945/SAMI/AJCA.2020.2.6

Abstract

In this study, the processes led to the production of gasoline and reactions resulting in increasing the octane number in the catalytic conversion unit with continuous resuscitation has been described first then simulated with Petrochem software. Considering all the research and investigations, the best recommended values of operational variables for producing high quality gasoline at nominal capacity has been achieved to account for temperature 525 degrees centigrade in the reactors input, flow rate of 22 tons per hour with 93% hydrogen purity, pressure 5.5 relative bar of the circulating gas compressor output, concentration of 0.9 percent weight of catalyst chloride, Naphtha hydrogen purification unit which resulted in the production of 25630 gasoline barrels per day and 0.37 volume percent benzene that the mass efficiency of the catalytic converter.

Graphical Abstract

Optimization of Naphtha Hydro-Threating Unit with Continuous Resuscitation Due to the Optimum Temperature of Octanizer Unit Reactors

Keywords

Main Subjects

[1]. T. Lan, Y. Zhang, C. Jiang, G. Yang, Z. Zhao, J. Atmosphere. Solar-Terrest. Phys., 2018, 179, 389-395.
[2]. I. Davood, K. Mohsen, A. Shahram, J. Mitra, R. Razieh, R. Mohamad, Chem. Eng. Res. Des., 2014, 92, 1704-1727.
[3]. K. Khalili-Damghani, F. Abdi, S. Abolmakarem, Appl. Soft Comput., 2018, 73, 816-828.
[4]. G. Zhou, L. Wang, Transp. Res. Part C Emerg., 2012, 21, 287-305.
[5]. F.V. Barsi, D. Cardoso, Braz. J. Chem. Eng., 2009, 26, 353-360.
[6]. L. Wang, Q. Li, Y. Yu, J. Liu, Expert Syst. Appl., 2018, 105, 112-128
[7]. I. Marton, A. Sánchezb, S. Carlos, S. Martorell, Chem. Eng. Trans, 2013, 33, 301–306.
[8]. E. Mazloumi, G. Rose, G. Currie, S. Moridpour, Eng. Appl. Artif. Intell. 2011, 24, 534–542.
[9]. (a) S. Mohammadi, A. Taheri, Z. Rezayati-zad, Prog. Chem. Biochem. Res., 2018, 1, 1-10.; (b) S. Sajjadifar, Z. Arzehgar, A. Ghayuri, J. Chin. Chem. Soc., 2018, 65, 205-211.
[10]. E. Mazloumi, G. Rose, G. Currie, S. Moridpour, Eng. Appl. Artif. Intell., 2011, 24, 534–542.
[11]. T. Varga, F. Szeifert, J. Abonyi, Eng. Appl. Artif. Intell., 2009, 22, 569–578.
[12]. H. OH., W.S. SEO., Jpn. J. Nurs. Sci.. 2012, 124, 110-121.
[13].      M. Gyngazova, A.V. Kravtsor, E.D. Ivanchina, M.R. Korolenko, D.D. Uvarkina, Catal. Ind., 2012, 2, 117-128.
[14]. H. Weifeng, S. Hongye, M.U. Shengjing, C.H.U. Jian, Chin. J. Chem. Eng., 2007, 15, 75-80.
[15]. M.S. Gyngazova, N.V. Chekantsev, M.V. Korolenko, E.D. Ivanchina, A.V. Kravtsov, Catal. Ind., 2012, 4, 284-291.
[16]. D. Iranshah, M. Karimi, S. Amiri, M. Jafari, R. Rafiei, M. Rahimpour, Chem. Eng. Res. Design, 2014, 92, 1704-1727.
 [17]. M.Z. Stijepovic, A. Vojvodic-Ostojic, I. Milenkovic, P. Linke, Energ. Fuel., 2009, 23, 979-983.
[30]. H. Arani, M. Shirvani, K. Safdarian, E. Dorostkar, Braz. J. Chem. Eng, 2009, 26, 723-732.
[18]. R.E. Palmer, S.H. Kao, C. Tong, D.R. Shipman, Hydrocarbon process., 2008, 55-66.
[19]. A. Samimi, S. Zarinabadi, A. Shahbazi, A. Azimi, M. Mirzaei, J. Chem. Rev., 2019, 1, 154-163.
[20]. S.A. Anatolevich, B.S. Michailovich, Chem. Methodol., 2019, 1, 12-29.
[21]. S. Houshmandynia, R. Raked, F. Golbabaei, Chem. Methodol., 2018, 2, 324-332.
[22]. H. Shafiee, F. Mostaghni, K. Ejraei, Chem. Methodol., 2018, 2, 114-127.
[23]. O. Ghasemi, N. Mehrdadi, M. Baghdadi, B. Aminzadeh, Iran. Chem. Commun., 2019, 7, 352-367.
[24]. G. Mansouri, M. Ghobadi, Iran. Chem. Commun., 2019, 7, 424-431.
[25]. S.M. Habibi-Khorassani, M. Dehdab, M. Darijani, Iran. Chem. Commun., 2019, 7, 455-471.
[26]. F. Fayyaz Jorshari, M. Rabbani, R. Rahimi, M. Rassa, Iran. Chem. Commun., 2019, 7, 53-62.
[27]. G. Taoufiq, V. Dua, Comput. Chem. Eng., 2011, 35, 1838-1856.
[28]. R. Motamedi, F. Ebrahimi, G. Rezanejade Bardajee, Asian J. Green Chem., 2019, 3, 22-33.
[29]. S. Sajjadifar, I. Amini, H. Jabbari, O. Pouralimardan, M.H. Fekri, K. Pal, Iran. Chem. Commun., 2019, 7, 191-199.
[30]. M. Stijepovic, A. Ostojic, I. Milenkovic, P. Linke, Energ. Fuel, 2009, 23, 979-983.
[31]. L. Nagarapu, M. Baseeruddin, S. Apuri, S. Kantevari, Catal. Commun., 2007, 8, 1729-1734.
[32]. (a) M. Kooti, M. Karimi, E. Nasiri, J. Nanopart. Res., 2018, 20, 16; (b) Z. Arzehgar, S. Sajjadifar, H. Arandiyan, Asian J. Green Chem., 2019, 3, 43-52.
[33]. A. Samimi, S. Zarinabadi, A. Shahbazi, A. Azimi, M. Mirzaei, J. Med. Chem. Sci., 2020, 3, 79-94.
[34]. M. Fattahi, A. Davoodnia, M. Pordel, Russ. J. Gen. Chem., 2017, 87, 863-867.
[35]. A. Nakhaei, A. Davoodnia, S. Yadegarian, Iran. Chem. Commun., 2018, 6, 334-345.
[36]. E. Teymooria, A. Davoodnia, A. Khojastehnezhad, N. Hosseininasab, Iran. Chem. Commun., 2019, 7, 271-282.
[37]. (a) A.N. Egorochkin, O.V. Kuznetsova, N.M. Khamaletdinova, L.G. Domratcheva-Lvova, Inorganica Chim. Acta, 2018, 471, 148-158.; (b) S. Sajjadifar, I. Amini; T. Amoozadeh, Chem. Methodol., 2017, 1, 1-11.
[38]. M.H. Fekri, A. Omrani, S. Jamehbozorgi, M. Razavi mehr, Adv. J. Chem. A, 2019, 2, 14-20.
[39]. R. Ghiasi, A. Heydarbeighi, Russian J. Inorg. Chem., 2016, 61, 985-992.
[40]. G.S. Nirmala, L. Muruganandam, J. Chem. Rev., 2019, 1, 114-129.
[41]. A. Samimi, S. Zarinabadi, A. Shahbazi, A. Azimi, M. Mirzaei, Iran. Chem. Commun., 2019, 7,681-691.