Document Type: Review Article

Author

Department of Chemistry, College of Science, Sebha University, Sebha, Libya

Abstract

The biological application of nanoparticles (NPs) is a rapidly developing area of nanotechnology that raises new possibilities in the diagnosis and treatment of human diseases. Because of the recent increase in cancer, chlorine disease, bacterial infections, and drug resistance. Nowadays, NPs have shown abilities to be used as alternative treatment for difficult diseases. For this reason, it is important to understand NP chemistry, preparation, interaction and possible mechanisms involved in its interaction with cancer cells and bacterial membranes. This study reports comparison between Au, Ag and ZnO NPs also discusses their physicochemical properties and their toxicity. In addition, this work aims to review different strategies of surface modification and functionalization of colloidal nanoparticles.

Graphical Abstract

Keywords

[1]. K. Naka, Y. Chujo. Nanohybridization of organic-inorganic materials. Springer, Berlin, Heidelberg, 2009, pp. 3-40.

[2]. S.O. Obare, R.E. Hollowell, C.J. Murphy. Langmuir, 2002, 18, 10407-10410.

[3]. Y. Kim, R.C. Johnson, J.T. Hupp, Nano Lett., 2001, 1, 165-167.

[4]. S. Watanabe, M. Sonobe, M. Arai, Y. Tazume, T. Matsuo, T. Nakamura, K. Yoshida, Chem. Commun., 2002, 2002, 2866-2867.

[5]. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature, 1996, 382, 607-609.

[6]. S.Y. Lin, S.W. Liu, C.M. Lin, C.H. Chen, Anal. chem., 2002, 74, 330-335.

[7]. G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, J. Phys. Chem., 1995, 99, 9466-9471.

[8]. S. Nie, S.R. Emory, Science., 1997, 275, 1102-1106.

[9]. J. Shan, H. Tenhu, Chem. Commun., 2007, 2007, 4580-4598.

[10]. L.L. Wang, C. Hu, L.Q. Shao, Int. J. nanomed., 2017, 12, 1227-1249.

[11]. F. Ghandehari, M. Fani, M. Rezaee, J. Med. Chem. Sci., 2018, 1, 28-30.

[12]. P. Schlexer, A.B. Andersen, B. Sebok, I. Chorkendorff, J. Schiøtz, T.W. Hansen, Particle Particle System. Characterizat., 2019, 36, 1800480.

[13]. G. Thirumurugan, M. Dhanaraju, Antimicrobial Agents., 2012.

[14]. F. Mohammadi, M. Yousefi, R. Ghahremanzadeh, Adv. J. Chem. Section A (Theoret., Eng. Appl. Chem.)., 2019, 2, 266-385.

[15]. A. Abeer Mohamad, Int. J. Pharma. Bio. Sci., 2015, 6, 1357-1364.

[16]. I. Sheikhshoaie, M. Sheikhshoaei, S. Ramezanpour, Chem. Method., 2018, 2, 83-180.

[17]. A. Dehno Khalaji, Chem. Method., 2019, 3, 519-683.

[18]. I. Amar, A. Sharif, M. Ali, S. Alshareef, F. Altohami, M. Abdulqadir, M. Ahwidi, Chem. Method., in Press.

[19]. D. Mandal, M.E. Bolander, D. Mukhopadhyay, G. Sarkar, P. Mukherjee, Appl. Microbio. biotechnol., 2006, 69, 485-492.

[20]. Z. Duan, R. Sun, R. Liu, C. Zhu, Ene. Fuel., 2007, 21, 2056-2065.

[21]. G. Zhao, S.E. Stevens, Biometals., 1998, 11, 27-32.

 [22]. C.Y. Lee, Y.T. Haung, W.F. Su, C.F. Lin, Appl. phys. lett., 2006, 89, 231116.

[23]. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, J. Nanobiotechnol., 2017, 15, 65.

[24]. G.M. Patel, G.C. Patel, R.B. Patel, J.K. Patel, M. Patel, J. Drug Target., 2006, 14, 63-67.

[25]. M. Fischman, V. Murashov, J. Borak, J. Seward. J. Occupant. Environ. Med., 2019, 61, e95-e98.

[26]. R. Cao, R. Villalonga, A. Fragoso, IEE Proceed. Nanobiotechnol., 2005, 152, 159-164.

[27]. D. Quintanar-Guerrero, E. Allémann, H. Fessi, E. Doelker, Drug develop. Indust. Pharm., 1998, 24, 1113-1128.

[28]. L.G. Fernández, F. Puntes, B. Boix. PhD Thesis. Universitat Autònoma de Barcelona., 2013.

[29]. J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev., 2007, 107, 2228-2269.

[30]. M.C. Daniel, D. Astruc, Chem. Rev., 2004, 104, 293-346.

[31]. H. Hirai, Y. Nakao, N. Toshima, J. Macromolecul. Sci. Chem.,1979, 13, 727-750.

[32]. H. Hirai, Y. Nakao, N. Toshima, J. Macromolecul. Sci. Chem., 1978, 12, 1117-1141.

[33]. Y. Ju-Nam, W. Abdussalam-Mohammed, J. J. Ojeda, Faraday Discuss., 2016, 186, 77-93.

[34]. L. Jia, T. He, Z. Li, X.M. Li, Chin. J. Catal., 2010, 31, 1307-1315.

[35]. J.M. Devi, J. Molecul. Grap. Model., 2017, 74, 359-365.

[36]. J.W. Park, J.S. Shumaker-Parry, ACS Nano., 2015, 9, 1665-1682.

[37]. G. Schmid, V. Maihack, F. Lantermann, S. Peschel, J. Chem. Soc., Dalton Trans., 1996, 1996, 589-595.

[38]. P. Shanmugam, K. Rajakumar, R. Boddula, R.C. Ngullie, W. Wei, J. Xie, E. Murugan, Mater. Sci. Energy Technol., 2019, 2, 532-542.

[39]. G. Schmid, M. Harms, J.O. Malm, J.O. Bovin, J. Van Ruitenbeck, H.W. Zandbergen, W.T. Fu. J. Am. Chem. Soc., 1993, 115, 2046-2048.

[40]. F.L. Wimmer, S. Wimmer, Inorg. Chim. Acta., 1988, 149, 1-3.

[41]. G.H. Woehrle, L.O. Brown, J.E. Hutchison, J. Am. Chem. Soc., 2005, 127, 2172 2183.

[42]. W.W. Weare, S.M. Reed, M.G. Warner, J. E. Hutchison, J. Am. Chem. Soc., 2000, 122, 12890-12891.

[43]. D. Mahl, J. Diendorf, S. Ristig, C. Greulich, Z.A. Li, M. Farle, M. Köller, M. Epple, J. Nanopart. Res., 2012, 14, 1153.

[44]. R.M. Lahtinen, S.F. Mertens, E. East, C.J. Kiely, D.J. Schiffrin, Langmuir., 2004, 20, 3289-3296.

[45]. Z. Khan, T. Singh, J.I. Hussain, A.A. Hashmi, Colloids and Surfaces B: Biointerfaces., 2013, 104, 11-17.

[46]. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, J. Am. Chem. Soc., 2007, 129, 13939-13948.

[47]. I. Ojea-Jiménez, F.M. Romero, N.G. Bastús, V. Puntes, J. Phys. Chem. C., 2010, 114, 1800-1804.

[48]. A. Leifert, Y. Pan-Bartnek, U. Simon, W. Jahnen-Dechent, Nanoscale., 2013, 5, 6224-6242.

[49]. M.A. Neouze, U. Schubert, Monat. Chemie-Chem. Mon., 2008,139, 183-195.

[50]. M.J. Rak, N K. Saadé, T. Friščić, A. Moores, Green Chem., 2014, 16, 86-89.

[51]. H. Noorizadeh, A. Farmany, Adv. J. Chem. Section A., 2019,2,128-135.

[52]. J. Cure, Y. Coppel, T. Dammak, P.F. Fazzini, A. Mlayah, B. Chaudret, P. Fau, Langmuir., 2015, 31, 1362-1367.

[53]. E.D. Cavassin, L.F.P. de Figueiredo, J.P. Otoch, M.M. Seckler, R.A. de Oliveira, F.F. Franco, V.S. Marangoni, V. Zucolotto, A.S.S. Levin, S.F. Costa, J. nanobiotechnol., 2015, 13, 64.

[54]. L.S. Dorobantu, C. Fallone, A.J. Noble, J. Veinot, G. Ma, G.G. Goss, R.E. Burrell, J. Nanopart. Res., 2015, 17, 172.

[55]. E.S. Aazam, Z. Zaheer, Bioprocess Biosystem. Eng., 2016, 39, 575-584.

[56]. X. Huang, X. Bao, Y. Liu, Z. Wang, Q. Hu, Sci. Rep., 2017, 7, 1860.

[57]. M.M. Oliveira, D. Ugarte, D. Zanchet, A.J. Zarbin, J. Coll. Interface Sci., 2005, 292, 429-435.

[58]. S. Sabella, A. Galeone, G. Vecchio, R. Cingolani, P.P. Pompa, J. Nanosci. Lett., 2011, 1, 145-165.

[59]. J. Bennington-Castro, MRS Bull., 2016, 41, 178-179.

[60]. S. Barua, S. Mitragotri, Nano Today., 2014, 9, 223-243.

[61]. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater., 2008, 9, 035004.

[62]. A.M. El Badawy, R.G. Silva, B. Morris, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Environ. Sci. Technol., 2010, 45, 283-287.

[63]. I.P. Mukha, A. Eremenko, N. Smirnova, A. Mikhienkova, G. Korchak, V. Gorchev, A.Y. Chunikhin, Appl. Biochem. Microbiol., 2013, 49, 199-206.

[64]. L. Wang, H. He, Y. Yu, L. Sun, S. Liu, C. Zhang, L. He, J. Inorg. Biochem., 2014, 135, 45-53.

[65]. V. Railean‐Plugaru, P. Pomastowski, K. Rafinska, M. Wypij, W. Kupczyk, H. Dahm, M. Jackowski, B. Buszewski, Electrophoresis., 2016, 37, 752-761.

[66]. H. Mu, J. Tang, Q. Liu, C. Sun, T. Wang, J. Duan, Sci. Rep., 2016, 6, 18877.

[67]. A. Gupta, R.F. Landis, V.M. Rotello, F1000 Res., 2016, 5, 1-10.

[68]. W. Zhang, Y. Li, J. Niu, Y. Chen. Langmuir., 2013, 29, 4647-4651.

[69]. J. Gopal, M. Manikandan, N. Hasan, C.H. Lee, H.F. Wu, J. Mass Spectromet., 2013, 48, 119-127.

[70]. A.A. Mohammed, Int. J. Curr. Microbiol. App. Sci., 2015, 4, 522-528.

[71]. I. Sondi, B. Salopek-Sondi, J. Coll. Interface Sci., 2004, 275, 177-182.

[72]. L. Liu, J. Yang, J. Xie, Z. Luo, J. Jiang, Y.Y. Yang, S. Liu, Nanoscale., 2013, 5, 3834-3840.

[73]. A. Grigor’eva, I. Saranina, N. Tikunova, A. Safonov, N. Timoshenko, A. Rebrov, E. Ryabchikova, Biometals., 2013,26 (3), 479-488.

[74]. C. Santos, A. Albuquerque, F. Sampaio, D. Keyson. Microbial pathogens and strategies for combating them: science, technology and education., 2013, 4, 143-154.

[75]. M.M. Mohamed, S.A. Fouad, H.A. Elshoky, G.M. Mohammed, T.A. Salaheldin, Int. J. Veter. Sci. Med., 2017, 5, 23-29.

[76]. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett., 2015, 7, 219-242.

[77]. B.V. Kumar, H.S.B. Naik, D. Girija, B.V. Kumar, J. Chem. Sci., 2011,123 (5), 615-621.

[78]. a) A. Nakhaei, A. Davoodnia, H. Nakhaei, J. Chem. Rev., 2019, 1, 139-153; b) A. Nikam, T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, J. Chem. Rev., 2019, 1, 154-163.

[79]. K. Senthil, Y. Tak, M. Seol, K. Yong, Nanoscale Res. Lett., 2009, 4, 1329.

[80]. S. Prashant, K. Kamlesh, C. Ramesh. Journal of Nanomedicine & Nanotechnology., 2017.

[81]. M. Nasrollahzadeh, S. Mahmoudi‐Gom Yek, N. Motahharifar, M. Ghafori Gorab, Chem. Rec., 2019, 1-45.

[82]. V.V. Torbina, A.A. Vodyankin, S. Ten, G.V. Mamontov, M.A. Salaev, V.I. Sobolev, O.V. Vodyankina, Catalysts, 2018, 8, 447.

[83]. A. Murugadoss, A. Chattopadhyay, Nanotechnol., 2007, 19, 015603.

[84]. S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar, Environ. Sci. Pollut. Res., 2014, 21, 1503-1513.

[85]. C. Deraedt, L. Salmon, S. Gatard, R. Ciganda, R. Hernandez, J. Ruiz, D. Astruc, Chem. Commun.., 2014, 50, 14194-14196 .

[86]. X. Liu, J. Ruiz, D. Astruc, J. Inorg. Org. Polym. Mater., 2018, 28, 399-409.

[87].S. Liu, Z. Zhang, Y. Wang, F. Wang, M.Y. Han, Talanta., 2005, 67, 456-461.

[88]. N. Berahim, W. Basirun, B. Leo, M. Johan, Catalysts, 2018, 8, 412.

[89].X. Fang, Y. Wang, Z. Wang, Z. Jiang, M. Dong, Energies, 2019, 12, 190.

[90]. N.K.R. Bogireddy, H.A.K. Kumar, B.K. Mandal, J. Environ. Chem. Eng., 2016, 4, 56-64.

[91]. Y. Yuan, N. Yan, P.J. Dyson, Inorg. Chem.., 2011, 50, 11069-11074.

[92]. B.L.V. Prasad, S.I. Stoeva, C.M. Sorensen, V. Zaikovski, K.J. Klabunde, J. Am. Chem. Soc., 2003, 125, 10488-10489.

[93]. S. Wang, Q. Zhao, H. Wei, J.Q. Wang, M. Cho, H. S. Cho, O. Terasaki, and Y. Wan, J. Am. Chem. Soc.,2013, 135, 11849-11860.

[94]. S. Alizadeh, T. Madrakian, M. Bahram, Adv. J. Chem. Section A., 2019, 2, 57-72.

[95]. A. Sharma, S.V. Madhunapantula, G.P. Robertson, Expert Opin. Drug Metabol. Toxicol., 2012, 8, 47-69.

[96]. C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Bioconjugate Chem., 2004, 15, 897-900.

[97]. A.M. Alkilany, C.J. Murphy, J. Nanoparticle Res., 2010, 12, 2313-2333.

[98]. C.L. Villiers, H. Freitas, R. Couderc, M.B. Villiers, P.N. Marche, Journal of Nanoparticle Research., 2010, 12, 55-60.

[99]. J. Liu, Y. Kang, S. Yin, B. Song, L. Wei, L. Chen, L. Shao, Int. J. Nanomed., 2017, 12, 8085-8099.

[100]. S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, F. Yekke Zare, Chem.Methodol., 2019, 3, 696-706.