CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 Department of Chemistry, Science and research Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Chemistry, Islamic Azad University of Ahvaz, Ahvaz, Iran

10.33945/SAMI/AJCA.2020.3.1

Abstract

Via Box-Behnken method, we evaluated the influence of various factors on absorption, including the amount of absorbent, the speed of stirring the solution and absorbent, pH of solution, time of contact, and various concentrations of violet methyl colour, to obtain optimum conditions. The maximum extent of violet methyl removal was found at 100 mg/L concentration, pH = 4.6, contact time = 50 minutes, 120 rotation speed, and absorbent dose = 1.488 g/L (0.0744 gram in 50 millilitre). In order to determine the reaction mechanism, two kinetic models were used, namely pseudo-first-order and pseudo-second kinetics models. The adsorption kinetics followed pseudo-second order model, and the mechanism of chemical reaction was the rate-limiting step. Furthermore, the Langmuir and Freundlich Isotherms were considered for absorbing the violet methyl on the palm fiber absorbent. The adsorption isotherms showed a balanced relationship between the materials adsorbed on the adsorbent (qe) and a balanced concentration in the solution (Ce) at a constant temperature. This method was used to remove the violet methyl colour from real samples such as industrial sewage, tap and river water.

Graphical Abstract

Optimization of Important Factors on the Adsorption of Methyl Violet by Modified Palm Fiber Using Experimental Design Method

Keywords

[1] M. Smelcerovic, D. Dorđevic, M. Novakovic, M. Mizdrakovic, J. Serb. Chem. Soc., 2010, 75, 855–872.
[2] S. Kim, Y.G. Lee, D.W. Jerng, Int. J. Heat Mass Transfer., 2015, 83, 545–551.
[3] P. Sharma, B.K. Saikia, M.R. Das, Colloids Surf., A., 2014, 457, 125–133.
[4] H. Kim, S.O. Kang, S. Park, H.S. Park, J. Ind. Eng. Chem., 2015, 21, 1191–1196.
[5] N. Daneshvar, V. Vatanpour, A.R. Khataee, M.H. Rasoulifard, M. Rastegar, J. Color Sci. Technol., 2008, 1, 83–89.
[6] S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.R. Das, A. Guha, J. Coll. Interface Sci., 2005, 228, 30–35.
[7] R.C. Bansal, M. Goyal, Activated Carbon Adsorption. Teylor & Francis Group Boca Raton Publishing, New York, 2005, Chapter 2, 125–127.
[8] B. Shi, G. Li, G. Wang, C. Feng, H. Tang, J. Hazard. Mater., 2007, 143, 567–574.
[9] L. Wang, A.Q. Wang, J. Chem. Technol. Biotechnol., 2007, 82, 711–720.
[10] M. Morita, T. Kamidate, R. Ito, H. Watanabe, Text. Res. J., 1996, 66, 470–473.
[11] S.A. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Desalination., 2008, 221, 259–267.
[12] Y. Fu, T. Viraraghavan, Bioresour. Technol., 2001, 79, 251–262.
[13] K.O. Iwuozor, Adv. J. Chem. Section A., 2019, 2, 105–127.
[14] M. Jafari, Adv. J. Chem. Section A., 2019, 2, 203–215.
[15] G. Mckay, J.F. Porter, G.R. Prased, Water, Air, Soil Pollut., 1999, 114, 423–438.
[16] A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Appl. Water Sci., 2017, 7, 543–568.
[17] A. Ahmad, S. Syafiie, A.H. Wan, S.O. Boon, J. Teknologi., 2002, 36, 31–44.
[18] S.J. Allen, B. Koumanova, J. Univ. Chem. Technol. Metall., 2005, 40, 175–192.
[19] P.K. Malik, Dyes Pigm, 2003, 56, 239–249.
[20] R.L. Tseng, F.C. Wu, R.S. Juang, J. Surf. Sci. Technol., 2003, 41, 487–495.
[21] S. Karaca, A. Gürses, R. Bayrak, Energy Convers. Manage., 2003, 45, 1693–1704.
[22] C. Namasivayam, M. Dinesh Kumar, K. Selvi, R. Begum Ashruffunissa, T. Vanathi, R.T. Yamuna, Biomass Bioenergy., 2001, 21, 477–483.
[23] K. Nakagawa, A. Namba, S.R. Mukaie, H. Tamon, P. Ariyadej Wanich, W. Tanthapanichakn, Water Res., 2004, 38, 1791–1798.
[24] K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, J. Coll. Interface Sci., 2003, 262, 194–199.
[25] V.K. Garg, R. Gupta, A.B. Yadav, R. Kumar, Bioresour. Technol., 2003, 89, 121–124.
[26] M. Ozacar, I.A. Sengil, Bioresour. Technol., 2005, 96, 791–795.
[27] H.S. Samiksha, S. Roohi, Int. J. Environ. Sci., 2013, 3, 1711–1725.
[28] A.E. Ofojama, J. Chem. Eng., 2008, 143, 85–95.
[29] A. Mittal, V. Gajba, J. Mittal, J. Hazard. Mater., 2008, 150, 364–375.
[30] Z.Z. Chowdhury, M. Zainsh, R.A. Khan, A.A. Ahmaed, J. Appl. Sci., 2011, 8, 230–237.
[31] S. Kathiresan, M. Vinoth, H.Y. Lim, R. Xavier, K. Marimuthu, S. Sreeamanan, H.M.H. Mas Resemal, Int. J. ChemTech Res., 2010, 2, 1892–1900.
[32] M.H. Isa, S.R.M. Kutty, M.K. Chen, Ammonia nitrigen removal by zeolit and treated oil palm fibre. In: Asia Water 2008 Conference, The Malaysian Water Association, Kuala Lumpur, Malaysia., 2008, 315–327.
[33] E. Daneshvar, M. Kousha, H. Dopeikar, D. Taghavi, A. Bhatnagar, Chem. Eng. J., 2012, 179, 158–168.
[34] F. Heshmatnzhad, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad, A.M. Maskooki, J. Hazard. Mater., 2012, 192, 585–592.
[35] S. Moradi, S. Azizian, J. Mol. Liq., 2016, 219, 909–913.