Document Type: Original Research Article

Authors

1 Department of Chemistry,Faculty of Science, Al-Azhar University, Assiut, Egypt

2 Housing and Building National Research Center, Cairo, Egypt

3 Manaseer cement and mining company, Jordan, Jordan

Abstract

The present study conducted to investigate the potential use of PG in cement industry. This was accomplished by preparing mortar mixes contain Portland cement clinker (PPC) with thermally treated PG at different temperatures (200, 400, 600, 800 and 1000 °C) instead of raw gypsum (RG) at different proportions. The characteristics of prepared mortars were investigated after curing in water for different periods (3, 7, 28 and 90 days) by determination of setting time, compressive strength, bulk density, and total porosity. The hydration kinetics was evaluated by determination of free lime and chemically combined water contents. FTIR spectroscopic analysis was used to investigate the change in structure of some mortars after curing. The change in morphology and microstructure of hardened pastes was investigated using scanning electron microscopy (SEM). The results approved the possibility for the utilization of treated PG at 800 and 1000 °C instead of raw gypsum in cement industry.

Graphical Abstract

Keywords

[1] A. Arman, R.K. Seals, Proc., Int. Symp. on Phosphogypsum, FIPR, Orlando, FL, 1990, pp. 562- 575.

[2] USEPA, Final Rep., United States Environmental Protection Agency, 1992.

[3] F. Ferguson, Florida Institute of Phosphate Research, 1988, 117-130.

[4] R. A. Sam, S. A. Bamford, J. J. Fletcher , F. G. Ofosu, A. Fuseini, Int. J. Sci. Technol., 2013, 2, 252-258.

[5] A. M. Neville, J.J. Brooks, Concrete technology England: Longman Scientific & Technical. 1987, pp. 242-246.

[6] E.M. Van der Merwe, C.A Strydom, South Afr. J. Sci., 2004, 100, 411-414.

[7] M. Singh. Cement Concrete Res., 2002, 32, 1033-1038.

[8] S. Manjit. Cement Concrete Res., 2003, 31, 1363-1369.

[9] S. Manjit. Construct. Build. Mater., 2005, 19, 480-486.

[10] J.H. Potgieter, S.S. Potgieter, R.I. McCrindle, C.A. Cement Concrete Res., 2003, 33, 1223-1227.

[11] I.A. Altuna, Y. Sert, Cement Concrete Res., 2004, 34, 677– 680.

[12] L. Kacimi, A.  Simon-Masseron, Z. Derriche, J. hazard. Mater., 2006, 137, 129137.

[13] H. Tayibi, M. Choura, F.A. López, F.J. Alguacil, A.L. Delgado, J. Environ. Manag., 2009, 90, 2377-86

[14] M. Yang, J. Qianand, Y. Pang, Construct. Build. Mater., 2008, 22, 1004-1008. 

[15] M.A. Taher, Resour. Conserv. Recy., 2007, 52, 28-38.

[16] S. Manjit, M. Garg, Cement Concrete Res., 2000, 30, 571–577.

[17] M.M. Smadi, R.H. Haddad, A.M. Akour, Potential use of phosphogypsum in concrete”, Cement Concrete Res., 1999, 29, 1419 - 1425.

[18] C. Papastefanou, S. Stoulos, A. Ioannidou, M. Manolopoulou, J. Environ. Radioact., 2006, 89, 188-198.

[19] J.P. Bolivar, R. Garcia-Tenorio, F. Vaca, Pregamon, 2000, 2941-2950.

[20] T. Reddya, D. Siva Sankar, R. Kumarb, H. Sudarsana Raoc. Asian J. Civil Eng., 2010, 11, 411-420.  

[21] H. El Nouhy, E. Khattab, S. Zeedan, Key Eng. Mater., 2016, 668, 181-188.

[22] G.M. Sadiqul Islama, F.H. Chowdhurya, M.T. Raihana, S.K. Sikder Amita, M.R. Islama, Proced. Eng., 2017, 171, 744–751.

[23] M.A. Taher, A.M. Amine, B.K. Damarany, Adv. J. Chem. Section A, 2019, 2, 296-315

[24] British European Standard BS EN-196-1: Methods of testing cement. Determination of strength, 2005.

[25] British European Standard BS EN-196-3: Methods of testing cement. Determination of setting times and soundness, 2005.

[26] M. Abd El Aziz, S. Abd El Aleem, M. Heikal, H. El Dizdamony, Cement Concrete Res., 2005, 35, 1592 –1600.

[27] H. El-Didamony, S.A. Abo-El-Enein, M.Y. Haggag, Cement Concrete Res., 1978, 8, 351-358.

[28]. M.P. Javellana, I. Jawed, Cement Concrete Res., 1982, 12, 399–403.

[29] M.S. Al-Hwaiti. Bangladesh J. Sci. Ind. Res., 2015, 50, 241-250.

[30] E. Erdem, H. Ölmez, Cement Concrete Res., 1993, 23, 115-121.

[31] H. He, P. Stroeven, E. Pirard, L. Courard, Key Eng. Mater.2012, 331-337.

[32] A.H Asbridge, G.A Chadbourn, C.L. Cement Concrete Res., 2001, 31, 1567–72.

[33] W. Teck-Kwon, K. Young-Hee, C. Yong-Sik, L. Jong-Kyu, I. Seob-Kim, S. Ryong- Kim,  Adv. Technol. Mater. Mater. Process., 2005, 7, 63-66.

[34] K.T. Lin, W.F. Chang, Strength properties of compacted phosphogypsum–based mixtures, Volume II. In proceedings of the second International symposium on phosphogypsum, University of Miami, Florida Institute of Phosphate Research, Bartow, Florida, 1988, pp. 239-254.

[35] L. Kacimi, A.  Simon-Masseron, Z. Derriche, J. hazard. Mater., 2006, 137, 129137.

[36] M.N. de Noirfontaine, S. Tusseau-Nenez, M. Signes-Frehel, G. Gasecki, C. GirodLabianca, J. Am. Ceram. Soc., 2009, 92, 2337–2344.

[37]. F.A. Rodrigues, Am. Chem. Soc., 1999, 39, 30–31.

[38]. W. Eitel, Silicate Science, Volume I: Silicate Structures, Academic Press, New York, NY, USA, 1964.

[39]. H. B¨oke, O. Cizer, B. Ipekoˇglu, E. Uˇgurlu, K. S¸erifaki, G. Toprak, Construct. Build. Mater., 2008, 22, 866–874.

[40]. M.A. Tantway, Res. Bull., 2015, 61, 415–421.