Document Type: Review Article

Authors

1 Department of Analytical chemistry, Faculty of Chemistry, Bu-Ali Sina University, 65178638695, Hamadan, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran

Abstract

In recent years, nanoparticles have been classified in two-or three-categories namely nanocrystals, films and quantum dots. Due to the various properties shown by these composites, in comparison to individual particles, the studies that are related to the understanding and characterization of these materials have gained much importance. nanoparticles are warming at room temperature to form metal colloids, in this stage, depending on the metal concentration i.e. metal type, organic solvent and delay time to stabilize the colloidal nanoparticles, the nanoparticles aggregation produce in different shapes (spherical, clusters, fractals, etc.),. The SMAD technique due to reducing and stabilizing metal nanoparticles in a polymer matrix at the time of synthesis, avoiding metal agglomeration and oxidizing of metal nanoparticles does not produce salt. There is great concentration on these compounds as they can be used in medicine as antibacterial coatings, due to the biocidal action of Au nanoparticles (AuNps). Undeniably, numerous selective homogeneous catalysts from nanoparticles have been reported but the only feature is the ability of the polymer chain to protect and stabilize the metal particles from oxidation, therefore, the penetration of the reagents for the desired catalytic reactions is possible.

Graphical Abstract

Keywords

[1] B. Osovetsky, Natural Nanogold, Nanomineralogy Sector, Mineralogy and Petrography Department, Perm State National Research University, Perm, Russia, Springer Mineralogy, 2017, pp. 11−40.

[2] S. Alizadeh, T. Madrakian, M. Bahram, Adv. J. Chem. Section A, 2019, 2, 57−72.

[3] G.Z. Kyzas, D.N. Bikiaris, N.K. Lazaridis, Langmuir, 2008, 24, 4791−4799.

[4] K. Sztandera, M. Gorzkiewicz, B. Klajnert-Maculewicz, Mol. Pharm., 2019, 1, 1−16.

[5] X. Huang, M.A. El-Sayed, J. Adv. Res., 2010, 1, 13-28.

[6] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Edit., 2009, 48, 60-103.

[7] A. Liang, Q. Liu, G. Wen, Zh. Jiang, Trend. Analyt. Chem., 2012, 37, 32−47.

[8] F. Toderas, M. Baia, D. Maniu, S. Astilean, J. Optoelect. Adv. Mater., 2008, 10, 2282−2284.

[9] S. Link, M.A. El-Sayed, Ann. Rev. Phys. Chem., 2003, 54, 331−366.

[10] X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Nanomedicine(Lond), 2007, 2, 681−693.

[11] C.J. Murphy,  A.M. Gole,  S.E. Hunyadi,  J.W. Stone,  P.N. Sisco, A. Alkilany,  B.E. Kinard, P. Hankins, Chem. Commun., 2008, 2008, 544−557.

[12] E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A.M. Javier, W.J. Parak, Nano Lett., 2005,  5, 585−589.

[13] P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett., 2006, 96, 113002.

[14] E.K. Sapsford, L. Berti, I.L. Medintz, Angew. Chem. Int. Edit., 2006, 45, 4562−4588.

[15] C. Xue, C.C. Kung, M. Gao, C.C. Liu, L. Dai, A. Urbas, Q. Li, Sens. Bio-Sens. Res., 2015, 3, 7−11.

[16] S. Same, A. Aghanejad, S.A. Nakhjavani, J. Barar, Y. Omidi, BioImpacts, 2016, 6, 169−181.

[17] M.A. El-Sayed, Account. Chem. Res., 2001, 34, 257−264.

[18] A. Masters, S.G. Bown, Semin. Surg, Oncol., 1992, 8, 242−249.

[19] V. Shanmugam, S. Selvakumar, C.S. Yeh, Chem. Soc. Rev., 2014, 43, 6254−6287.

[20] E.J. Hong, D.G. Choi, M.S. Shim, Acta Pharm. Sin. B, 2016, 6, 297−307.

[21] S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem., 2000, 19, 409−453.

[22] N. Harris, M.J. Ford, M.B. Cortie, J. Phys. Chem. B, 2006, 110, 10701−10707.

[23] B.N. Khlebtsov, V.A. Khanadeev, I.L. Maksimova, G.S. Terentyuk, N.G. Khlebtsov, Nanotechnol. Russian, 2010, 5, 454−468.

[24] S. Link, M.A. El-Sayed, J. Phys. Chem. B, 1999, 103, 8410−8426.

[25] C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B, 2005, 109, 13857−13870.

[26] C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Technol. Cancer Res. Treat., 2004, 3, 33−40.

[27] G.S. Terentyuk, G.N. Maslyakova, L.V.  Suleymanova, N.G. Khlebtsov, B.N. Garif, G.K. Akchurin, I.L. Maksimova, V.V. Tuchin, J. Biomed. Opt., 2009, 14, 021016.

[28] B. Khlebtsov, A. Melnikov,V. Zharov, N. Khlebtsov, Nanotechnology, 2006, 17, 1437−1445.

[29] D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, Cancer Lett., 2006, 239, 36−45.

[30] D.O. Lapotko, L. Hleb, Y. Ekaterina, A.A. Oraevsky, Nanomedicine (Lond), 2007, 2, 241−253.

[31] P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Adv. Drug Deliver. Rev., 2008, 60, 1307–1315.

[32] D. Alba-Molina, M.T. Martín-Romero, L. Camacho, J.J. Giner-Casares, Appl. Sci., 2017, 7, 916.

[33] E. Ine´s Yslas, L. Exequie Ibarra, M. Alejandra Molina, C. Rivarola, C. Alfredo Barbero, M. Lucı´a Bertuzzi, J. Nanopart. Res., 2015, 17, 389.

[34] Z. An, M. Yamaguchi, Chem. Commun., 2012, 48, 7383–7385.

[35] M. Brust, C.J. Kiely, D. Bethell, D.J. Schiffrin, J. Am. Chem. Soc., 1998, 120,12367-12368.

[35] M.J. Weaver, X. Gao, Y. Zhang, J. Phys. Chem., 1992, 96, 510-513

[36] K. Chen, W.B. Caldwell, C.A. Mirkin, J. Am. Chem. Soc., 1993, 115, 1193-1199.

[37] J.G. Hou, Y. Wang, W. Xu, S.Y. Zhang, Z. Jian, Y.H. Zhang, Appl. Phys. Lett., 1997, 70, 3110-3114.

[38] G. Cardenas-Trivinol, C. Cruzat-Contreras, J. Cluster Sci., 2018, 2, 100-116.

[39] J. Ronald, V. Zaneveld, J.C. Kitchen, Adv. Eart. Space Sci., 1995, 100, 13309.

[40] C. Pecharroma´n, A. Esteban-Cubillo, H. Ferna´ndez, L. Esteban- Tejeda, R. Pina-Zapardiel, J. Moya, J. Solis, C. Afonso, Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots:  Simulation and Experiment, Plasmonics, 4th Ed, 2009, pp. 261-265.

[41] P.N. Sen, D.B. Tanner, Phys. Rev. B, 1982, 26 3582-3587.

[42] R. Ruppin, Phys. Rev. B, 1979, 19, 1318-1321.

[43] S. Forster, Top Curr. Chem., 2003, 226, 1–28.

[44] Z. Chen, C. Zhang, Y. Tan, T. Zhou, H. Ma, C. Wan, Y. Lin, K. Li, Microchim. Acta, 2015, 182, 611-615.

[45] G. Du, D. Zhang, B. Xia, L. Xu, Sh. Wu, S. Zhan, X. Ni, X. Zhou, L. Wang, Microchim. Acta, 2016, 183, 2251-2258.

[46] L. He, W. Zhi, Y. Wu, S. Zhan, F. Wang, H. Xing, P. Zhou, Anal. Method., 2012, 4, 2266-2271.

[47] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science, 1997, 277, 1078-1081.

[48] F. Ghasemi, M.R. Hormozi-Nezhad, M. Mahmoudi, Anal. Chim. Acta, 2015, 882, 58–67.

[49] S. Shahrokhian, Anal. Chem., 2001, 73, 5972–5978.

[50] R. Janaky, V. Varga, A. Hermann, P. Saransaari, S.S. Oja, Neurochem. Res., 2000, 25, 1397–1405.

[51] C.K. Mathew, K.E. Van Holde, K.G. Ahern, Biochemistry, International ed., Addison- Wesley Publishing Company, San Francisco, Bioquímica. Pearson Education 2000.

[52] A. Meister, M.E. Anderson, Ann. Rev. Biochem., 1983, 52, 711–760.

[53] T.P. Dalton, H.G. Shertzer, A. Puga, Ann. Rev. Pharm. Toxicol., 1999, 39, 67–101.

[54] G. Noctor, L. Gomez, H. Vanacker, C.H. Foyer, J. Exp. Botany, 2002, 53, 1283–1304.

[55] W.A. Kleinman, J.P. Richie, J. Biochem. Pharm., 2000, 60, 19–29.

[56] R. Elghanian, J. Storhoff, C. Mucic, R. Lestinger, C. Mirkin, Science, 1997, 277, 1078-81.

[57] J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, J. Am. Chem. Soc., 2000, 122, 4640–4650.

[58] R.C. Mucic, J.J. Storhoff, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc., 1998, 120, 12674–12675.

[59] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin, 1995.

[60] I. Ruach-Nir, T.A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, J. Am. Chem. Soc., 2007, 129, 84-87.

[61] M. Moskovits, B. Vlckova, J. Phys. Chem. B, 2005, 109, 14755-14758.

[62] P.E. Phelan, P. Bhattacharya, Nano Lett., 2006, 6, 1529-1534.

[63] N. Kallay, S.J. Zalac, J. Coll. Interface Sci., 2002, 253, 70–76.

[64] T. Laaksonen, P. Ahonen, C. Johans, K. Kontturi, Chem. Phys. Chem., 2006, 7, 2143–2149.

[65] T. Kim, K. Lee, M. Gong, S.W. Joo, Langmuir, 2005, 21, 9524-9528.

[66] R.J. Hunter, Foundations of Colloid Science, Clarendon Press, Oxford, London, Great Britain, 1992.

[67] E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Dover, New York, 1999.

[68] M. Smith, T. Matsoukas, Chem. Engin. Sci. 1998, 53, 1777–1786.

[69] D.A. Weitz, J.S. Huang, M.Y. Lin, J. Sung, Phys. Rev. Lett., 1985, 54, 1416–1419.

[70] J. Liao, Y. Zhang, W. Yu, L. Xu, C. Ge, J. Liu, N. Gu, Phys. Eng. Aspect., 2003, 223, 177-183.

[71] C.W. Liu, Y.T. Hsieh, C.C. Huang, Z.H. Lin, H. T. Chang, Chem. Commun., 2008, 2008, 2242–2244.

[72] R.N. Dansby-Sparks, J. Jin, S.J. Mechery, U. Sampathkumaran, T. William Owen, B.D. Yu, K. Goswami, K. Hong, J. Grant, Z.L. Xue, Anal. Chem., 2010, 82, 593−600.

[73] G.J. Koch, J.Y. Beyon, F. Gibert, B.W. Barnes, S. Ismail, U. Petros, P.J. Petzar, J. Yu, E. A. Modlin, K.J. Davis, P.N. Singh, Appl. Optics, 2008, 47, 944−956.

[74] D.R. Walt, G. Gabor, C. Goyet, Anal. Chim. Acta, 1993, 274, 47−52.

[75] J.J. Cole, N.F. Caraco, G.W. Kling, T.K. Kratz, Science, 1994, 265, 1568−1570.

[76] S. De Gregorio, M. Camarda, M. Longo, S. Cappuzzo, G. Giudice, S. Gurrieri, Water Res., 2011, 45, 3005-3011.

[77] S. Hanstein, D. de Bee, H.H. Felle, Sensor.. Actuat. B-Chem., 2001, 81, 107−114.

[78] C. Descoins, M. Mathlouthi, M. Le, M. Hennequin, J. Food Chem., 2005, 95, 541−553.

[79] B. Frahm, H.C. Blank, P. Cornand, W. Oelßner, U. Guth, P. Lane, A. Munack, K. Johannsen, R. P rtner, J. Biotechnol., 2002, 99, 133-148.

[80] A. Mills, A. Lepre, L. Wild, Sensor. Actuat. B-Chem., 1997, 39, 419-425.

[81] W. Jin, J. Jiang, Y. Song, C. Bai, Res. Physiol. Neurobiol., 2012, 180, 141–146.

[82] R.W. Stow, B.F. Randall, Am. J. Phys., 1954, 179, 678−678.

[83] J.W. Severinghaus, A.F. Bradley, J. Appl. Physiol., 1958, 13, 515–520.

[84] Z. Yue, W. Niu, W. Zhang, G. Liu, W. J. Parak, J. Coll. Interface Sci., 2010, 348, 227–231.

[85] T. Kida, M.H. Seo, Sh. Kishi, Y. Kanmura, N. Yamazoe, K. Shimanoe, Anal. Chem., 2010, 82, 3315−3319.

[86] T. Kida, T. Minami, M. Yuasa, K. Shimanoe, N. Yamazoe, Electrochem. Commun., 2008, 10, 311–314.

[87] F. Mafune, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B, 2001, 105,9050-9056.

[88] J. Nam, N. Won, H. Jin, H. Chung, S. Kim, J. Am. Chem. Soc., 2009, 131, 13566-13884.

[89] K. Sato, K. Hosokawa, M. Maeda, J. Am. Chem. Soc., 2003, 125, 8102-8103.

[90] A.F. Scarpettini, A.V. Bragas, Langmuir, 2010, 26, 15948–15953.

[91] M. Shamsipur, A. Safavi, Z. Mohammadpour, R. Ahmadi, Microchim. Acta, 2016, 183, 2327-2335.

[92] N. Thi Kim Thanh, Z. Rosenzweig, Anal. Chem., 2002, 74, 1624-1628.

[93] Y. Wu, S. Zhan, F. Wang, L. He, W. Zhi, P. Zhou, Chem. Commun., 2012, 48, 4459–4461.

[94] F. Keshvari, M. Bahram, K. Farhadi, J. Iran. Chem. Soc., 2016, 13, 1411–1416.

[95] A. Pournaghi, F. Keshvari, M. Bahram, J. Iran. Chem. Soc., 2019, 143–149.

[96] F. Keshvari, M. Bahram, A.A. Farshid, Analyt. Method., 2015, 7, 4560-4567. 

[97] N. Mohseni, M. Bahram, Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy, 2018, 193, 451–457.

[98] N. Mohseni, M. Bahram, T. Baheri, Sen. Actuat. B Chem., 2017, 250, 509-517.

[99] M. Bahram, S. Alizadeh, T. Madrakian, Sen. Lett., 2015, 13, 1–7.

[100] M. Bahram, S. Alizadeh, Sen. Lett., 2017, 15, 1-10.

[101]M. Bahram, S. Alizadeh, Int. J. Biotechnol. Bioeng., 2018, 4, 17-29.

[102] M. Bahram, T. Madrakian, S. Alizadeh, J. Pharm. Anal., 2017, 7, 411–416.

[103] S. Alizadeh, M. Moghtader, N. Aliasgharlou, Sen. Lett., 2019, 17, 1–7.