CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 Department of Chemistry, Arts, Science, and Commerce College, Veer Narmad South Gujrat University, Surat, Gujrat, India

2 Department of Chemistry, M.B. Patel Science College, Sardar Patel University, Anand, Gujarat, India

3 Department of Organic Chemistry, Shri A.N. Patel P.G. Institute of Research and Sciences, Anand, Gujarat, India

Abstract

In this research study, we have synthesized a library of 2-substituted-1-(2-(5-((5-5-benzoyl-1H-benzo[d][1,2,3]triazole-1-yl)methyl)-2-thioxo-1,3,4-oxadiazol-3(2H)-yl) acetamido)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylic acids from 1H-benzo[d][1,2,3] triazole-5-yl)(phenyl)methanone. The synthesized compounds were characterized using 1H NMR, 13C NMR, C,H,N elemental analysis and mass spectroscopy studies. All the compounds were investigated for their in silico ADME prediction properties, in vitro antibacterial activity against four bacterial strains, antifungal activity against two fungal strains, and antimycobacterial activity against the H37Rv. All the compounds revealed good to moderate activity against the bacterial strain. Among all the compounds, 6b and 6f showed better antimycobacterial agents compared with that of the standard drug ciprofloxacin and pyrazinamide, whereas 6a, 6b, and 6e were found to be excellent antifungal and antibacterial agent compared standard drugs clotrimazole and ciprofloxacin. The results of the in-silico analysis depicted that the synthesized compounds had excellent drug-likeness properties.

Graphical Abstract

In Silico Approach Towards the Prediction of Drug-likeness, in Vitro Microbial Investigation and Formation of Dihydropyrrolone Conjugates

Keywords

[1] M.L. Barreca, A. Rao, L. De Luca, M. Zappala, C. Gurnari, P. Monforte, E. De Clercq, B.V. Maele, Z. Debyser, M. Witvrouw, J.M. Briggs, A. Chimirri, J. Chem. Inform. Comput. Sci., 2004, 44, 1450–1455.
[2] K. Pandya, P.S. Desai, World J. Pharm. Res., 2018, 7, 465-474.
[3] N. Kolocouris, A. Kolocouris, G.B. Foscolos, G. Fytas, J. Neyts, E. Padalko, J. Balzarini, R. Snoeck, G. Andrei, E. De Clercq. J. Med. Chem., 1996, 39, 3307–3318.
[4] K.M. Pandya, P.S. Desai, N.B. Patel, B.P. Dave, Chem. Biol. Interface, 2018, 8, 314-322
[5] V.O. Koz’minykh, N.M. Igidov, S.S. Zykova, V.E. Kolla, N.S. Shuklina, T. Odegova, Pharm. Chem. J., 2002, 36, 188–191
[6] K.M. Pandya, Synthesis and Cytotoxicity of Azaheterocyclic Compounds. Thesis, Rowan University: New Jersey, 2018.
[7] T.A. Silina, V.L. Gein, L.F. Gein, E.V. Voronina, Pharm. Chem. J., 2003, 37, 585–587.
[8] V.L. Gein, E.V. Voronina, T.E. Ryumina, G.N. Novoselova, K.D. Potemkin, Y.S. Andreichikov, Pharm. Chem. J., 1996, 30, 25–26.
[9] F. Lovren, I.D. Gaon, B. Bobarevic, Arch. Pharm., 1990, 323, 901–904.
[10] T. Sano, Y. Horiguchi, J. Toda, K. Imafuku, Y. Tsuda, Chem. Pharm. Bull., 1984, 32, 497–503.
[11] A.J. Aasen, C.C. Culvenor, J. Org. Chem., 1969, 34, 4143– 4147.
[12] B.M. Goldschmidt, Substituted pyrrolizidines, J. Org. Chem., 1962, 27, 4057–4058.
[13] J.J. Tufariello, J.P. Tette, J. Org. Chem., 1975, 40, 3866–3869.
[14] K. M. Pandya, A.H. Patel, P.S.Desai, Chem Afr., 2019. https://doi.org/10.1007/s42250-019-00096-5
[15] C.J.H. Morton, R. Gilmour, D.M. Smith, P. Lightfoot, A.M.Z. Slawin, E. MacLean, Tetrahedron, 2002, 58, 5547–5565.
[16] A. Ueda, Y. Sekiya, M. Taniguchi, Japanese Patent JP 2,003,165,918, 2003.
[17] K. Pandya, R.  Patel, J. Chem. Chem. Sci., 2017, 7, 1331-1341.
[18] J.M. Adam, P.V. Dalvi, V.S. Ekkundi, J.P. Bacher, S. Tiwari, World Patent WO 2,004,083,170, 2004.
[19] J.M. Adam, P.V. Dalvi, V.S. Ekkundi, J.P. Bacher, R. Sreenivasan, D.M. Rane, World Patent WO 2,004,089,941, 2004.
[20]  H.  Shiraishi, T. Nishitani, S. Sakaguchi, Y. Ishii, J. Org. Chem., 1998, 63, 6234–6238.
[21] X. Lin, Z. Mao, X. Dai, P. Lu, Y. Wang, Chem. Commun., 2011, 47, 6620–6622.
[22] O.A. Attanasi, G. Favi, F. Mantellini, G. Moscatelli, S. Santeusanio, J. Org. Chem. 2011, 76, 2860–2866.
[23] E. Ghabraie, S. Balalaie, M. Bararjanian, H.R. Bijanzadeh, F. Rominger, Tetrahedron, 2011, 67, 5415–5420.
[24] C.R. Reddy, M.D. Reddy, B. Srikanth, K.R. Prasad, Org. Biomol. Chem., 2011, 9, 6027–6033.
[25] B.M. Trost, J.-P. Lumb, J.M. Azzarelli, J. Am. Chem. Soc., 2011, 133, 740–743.
[26] A.V. Gulevich, A.S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev., 2013, 113, 3084–3213.
[27] H.C. Brown, U.R. Khire, G. Narla, U.S. Racherla, J. Org. Chem., 1995, 60, 544–549.
[28] O. Yuryeva, Y. Kondratova, L. Logoyda, Asian J. Pharm. Clin. Res., 2018, 11, 200–204.
[29] A.R. Karimi, Z. Alimohammadia, J. Azizian, A.A. Mohammadi, M.R. Mohammadi-Zadeh, Catal. Commun., 2006, 7, 728–732.
[30] A.O. Eseola, W. Li, W.H. Sun, M. Zhang, L. Xiao, J. A. Woods, Dyes Pigments, 2011, 88, 262–273.
[31] R. Hosseinnia, M. Mamaghani, K. Tabatabaeian, F. Shirini, M. Rassa, Bioorg. Med. Chem. Lett., 2012, 22, 5956–5960.
[32] B. Yilmaz, U. Kocak, J. Adv. Pharm. Res., 2019, 3, 17–22.
[33] D.A. Dougherty, Acc. Chem. Res., 2013, 46, 885-893.
[34] R. Leon, A.G. Garcia, J. Marco-Contelles, Med. Res. Rev., 2013, 33, 139.
[35] M. Metwally, M. Gouda, A.N. Harmal, A. Khalil, Eur. J. Med. Chem., 2012, 56, 254–262.
[36] H.P. Shah, B.R. Shah, J.J. Bhatt, N.C. Desai, P.B. Trivedi, N.K. Undavia, Indian. J. Chem. B, 1998, 37, 180-182.
[37]   S.M. El-Khawas, N.S. Habib, J. Hetero. Chem., 1989, 26, 177–181.
[38] R.R. Somani, P.Y. Shirodkar, V.J. Kadam, Chin. J. Chem., 2008, 26, 117-1731.
[39] D.K. Shukla, S.D. Srivastava, Indian J. Chem., 2008, 47, 463-469.
[40] M. Tabcheh, M. Baroudi, F. El-omar, A. Elzant, M. Elkhatib, V. Rolland, Asian J.  Chem., 2006, 18, 1771–1782.
[41] S.B. Rose, R.B. Miller, J. Bacteriol., 1939, 38, 525-537.
[42] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev., 2001, 46, 3–26.