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 There is a need for targeted, effective antiviral therapeutic treatment for the 
global threat of COVID-19, like viral pandemics. Our efforts in this direction 
present the in-silico testing of a hypothesis through molecular docking. We 
have demonstrated the possibility of a microbial siderophore 
desferrioxamine-E produced by Pseudomonas stutzeri SGM-1 for effective 
drug targeting and drug development against SARS-CoV-2, like viruses. Iron 
homeostasis and COVID-19 have a close relationship. An iron chelator 
desferrioxamine-E binding with the SARS-CoV-2 virus can inhibit the viral 
RNA binding and packaging into the new virions inside the host cell. The well-
known efficacy of iron chelation and RNA binding domain of SARS-CoV-2 
nucleocapsid interaction of desferrioxamine-E studied through molecular 
docking has promising potential for exploring microbial iron chelators as 
adjuncts for in-silico clinical trials and randomized clinical trials. 
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Introduction  

Severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) is a causative agent for COVID-19 

disease, which was declared a global pandemic 

officially by WHO (World Health Organization) 

on Mar 11, 2020 [1]. From the onset of the third 

wave, still in 2022, there is a threat of continuous 

rise with reports of new outbreaks of positive 

COVID-19 cases associated with the increased 

death toll. Despite vaccination on a larger scale, 

in most countries, there is a need to prevent and 

eradicate different coronavirus variants. Iron is 

essential for the growth and living of nearly all 

the life forms on the earth. The redox potential of 

iron helps fix or harvest energy through different 

metabolic processes among different life forms; 

autotrophic and heterotrophic [2,3]. Many 

catalytic biotransformation processes involve 

specialized enzymes with iron as their cofactor 

[4]. In mammalian cells, iron is majorly 

accumulated as tightly bound to proteins like 

hemoglobin and ferritin and transported via 

transferrin and lactoferrin [5]. New targeted 

therapeutic drugs would be the best treatment 

for such viral pandemics [6].  

The genome of the SARS-CoV-2 virus consists of 

a single-stranded RNA like earlier MERS–CoV and 

SARS-CoV [7]. In December 2019, this β-

coronavirus (nCoV), was first identified and 

reported from the respiratory tract of a patient 

with pneumonia in Wuhan, Hubei, China. This 

SARS-CoV-2 virus had unique and complete 

components for human immune invasion, 

ultimately leading to infectivity and fatality of its 

hosts. A typical SARS-CoV-2 virion structurally 

has four main structural proteins viz., S-protein 

(Spike glycoprotein), E-protein (small envelope 

glycoprotein), M-protein (Membrane 

glycoprotein), and N-protein (Nucleocapsid 

protein) [7]. Among these proteins, the N-protein 

for nucleocapsid is an essential protein for the 

viral structural assembly, as it binds to the RNA 

and packaging into the nucleocapsid’s long 

helical structures, called the ribonucleoprotein 

complex (RNP) [8,9]. This protein plays a vital 

role in viral transcription, replication, and viral 

infection-associated cellular response of the host 

cells [10,11]. The N-protein domain architecture 

is composed of two highly conserved shared 

domains, the N-terminal RNA-binding domain 

(NTD) and the C-terminal dimerization domain 

(CTD) [12,13]. 

The therapeutic strategies against SARS-CoV-2-

like viruses involve the targets of viral entry into 

the host, RNA transcription, replication, and 

protein processing [14]. Antiviral drugs like 

Remdesivir, earlier developed for the Ebola virus 

[15,16], inhibit the RNA-dependent RNA 

polymerase enzyme of the SARS-CoV-2 virus 

[17]. The trace but essential element iron is 

significant as it is involved in DNA/RNA 

synthesis, repair, and other different 

physiological processes [18]. Like human host 

cells, the infectious SARS-CoV-2 also needs iron 

to complete its replication process, which 

involves various iron-containing enzymes. Inside 

the host organism, the SARS-CoV-2 virus and the 

host cells actively compete for iron availability 

for the above reasons. Recently, patients with 

SARS-CoV-2 infection have reported a high 

ferritin level [19]. However, it is unclear that this 

possibility is because of novel coronavirus 

hepcidin-like action, which can directly increase 

ferritin levels regardless of the inflammatory 

effect [20]. Thus, iron chelation can be an 

essential strategy in treating viral infections [21]. 

The iron chelator drug’s action involves 

inhibiting viral replication and modulating host 

cell cellular iron homeostasis [22].  

Experimental 

In light of the facts mentioned above, an attempt 

has been made to study an iron chelator 

desferrioxamine-E of an indigenous salt-tolerant 

Pseudomonas stutzeri strain SGM-1 [23] isolated 

from saline soil habitat [24]. The iron chelator 
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desferrioxamine-E is pharmaceutically known as 

nocardamine, which we have tested here for 

targeting the N-terminal RNA binding domain of 

the SARS-CoV-2 viral nucleocapsid protein. The 

structure of the N-terminal RNA binding domain 

of the SARS-CoV-2 viral nucleocapsid protein 

(PDB: 6M3M, 2.70 Å resolution, 2020) was 

obtained from the protein data bank (PDB). The 

chemical structure of the iron chelator 

desferrioxamine-E, also called nocardamine was 

downloaded from PubChem (CID 167865). The 

ligand-protein interaction was studied by 

docking with AutoDock 1.5.6, Discovery Studio 

Visualizer (DSV) 2.1, and Cygwin64. The internal 

conformation in AutoDock was searched with the 

help of the Genetic Algorithm (GA) and 

Lamarckian Genetic Algorithm [25], producing an 

ensemble of conformations. The binding energy 

is calculated by AutoDock 1.5.6 software 

whereas, the inhibition constant (Ki) was 

obtained from the binding energy (ΔG) using the 

formula: Ki = exp(ΔG/RT), where R is the 

universal gas constant (1.985 × 10−3 kcal mol−1 

K−1). T is the temperature (25 °C) [26]. The 

lowest binding energy conformer was searched 

out of 10 different conformers, and for each 

docking simulation, the best scoring pose was 

judged by Cygwin64. Chosen ligand-protein 

complex was further analyzed and visualized 

using DSV software.  

Results and discussion 

The best docking result of desferrioxamine-E 

with the N-terminal RNA binding domain of 

SARS-CoV-2 nucleocapsid protein is shown in 

Figure 1. The best binding energy and inhibition 

constant of desferrioxamine-E were found, - 6.92 

kcal.mol-1 and 8.52 µM, respectively. 

Desferrioxamine-E molecule showed hydrogen 

bonding interaction with Trp133 and 

hydrophobic interactions with Tyr124, Ala153, 

Ala157, Lys66, and Tyr110. The 

microenvironment of COVID-19 protein changes 

with desferrioxamine-E because there are 

several interacting tryptophan, tyrosine, alanine, 

and lysine residues around the binding pocket of 

the desferrioxamine-E molecule. This specific 

interaction leads to conformational changes in 

the SARS-CoV-2 nucleocapsid protein N-terminal 

RNA binding domain. Apart from depriving iron 

to the virus, the interaction with amino acid 

residues of the viral N-terminal RNA binding 

domain by desferrioxamine-E could inhibit RNA 

binding and its packaging into new virions.  

 
Figure 1. Desferrioxamine-E interaction with SARS-CoV-2 nucleocapsid protein N-terminal RNA 

binding domain 
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Research efforts are focused on spike protein 

and viral proteases, while the N-protein of SARS-

CoV-2 could be an excellent drug target. The N-

protein has a pivotal role in the virus life cycle, 

like RNA binding, dimerization, and RNA 

packaging in new nucleocapsids of coronaviruses 

inside the infected host cells. The 

desferrioxamine-E has already been reported for 

its iron chelation and antiviral and 

immunomodulatory effect in vitro and in vivo 

[22,27]. Iron homeostasis and COVID-19 have a 

close relationship, and the cytokine storm 

associated with the infection can be mitigated 

with the effective use of iron chelators [28]. 

Desferrioxamine-E is the high-affinity iron 

chelator that can deprive available iron in the 

viral microcosm and bind to the SARS-CoV-2 

nucleocapsid RNA binding domain [22,29]. 

Although oral administration of desferrioxamine 

drugs is impossible because of poor absorption 

capacity and related pharmacokinetics, it is used 

directly intramuscularly or with continuous 

intravenous infusions [30]. Desferrioxamine-E 

binding can inhibit the viral RNA binding and 

packaging into the new virions inside the host 

cell. This dual therapeutic role of this iron 

chelator can be further explored as an adjunct for 

effective drug targeting and drug development 

for the treatment of SARS-CoV-2 [29]. 

Conclusions 

Based on the docking study and limited data, a 

hypothesis was proposed for using iron chelators 

like desferrioxamine-E as an adjunct for effective 

drug targeting and drug development for the 

treatment of SARS-CoV-2-like viruses. The 

docking result of desferrioxamine-E with SARS-

CoV-2 nucleocapsid protein N-terminal RNA 

binding domain resulted in the best binding 

energy and inhibition constant of 

desferrioxamine-E as - 6.92 kcal mol-1 and 8.52 

µM, respectively. The interaction of 

desferrioxamine-E molecule was found with 

Trp133 with hydrogen bonding and with 

hydrophobic interactions for Tyr124, Ala153, 

Ala157, Lys66, and Tyr110. Although our 

hypothesis needs to be explored through 

randomized clinical trials (RCTs) for its usability 

as an adjunct, this idea of using iron chelator as 

an adjunct could advance for effective drug 

targeting of the existing iron chelator drugs for 

such viral diseases. 
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