Document Type : Review Article


1 Department of Chemistry, University of Ilorin, Ilorin, Nigeria

2 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

3 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria

4 Department of Chemistry, Faculty of Physical Sciences, University of Ibadan, Ibadan, Nigeria

5 CAS Key Laboratory of Green Painting, CAS Institute of Chemistry, University of Chinese Academy of Sciences, 100190 Beijing, China



A remarkable source of renewable energy is the Dye-­sensitized solar cells (DSCs). However, the major limitation of power conversion efficiency (PCE) of devices is their inability to produce electricity using photons from the near­infrared (NIR) spectral region. Some Metal-free organic sensitizers make use of strong electron donating or withdrawing moieties to tune the optical band gap to allow the absorption of lower energy wavelengths in charge transfer systems while porphyrins and phthalocyanines compounds are used to shift the Soret and Q bands toward lower energy absorption. Various molecules are been synthesized to improve and increase the power conversion efficiency of the compounds. This study discusses the structure of these compounds, working principles and their derivatives as recent advances been carried out to improve the power efficiencies of the compounds.

Graphical Abstract

Porphyrin and Phthalocyanines-Based Solar Cells: Fundamental Mechanisms and Recent Advances


Main Subjects

[2]. L. Eldada, Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost. Optoelectronic Integrated Circuits XIII. International Society for Optics and Photonics, 2011, 7942, 79420F.
[3].T. Tanti, World economic forum annual meeting, 2018.
[4]. M.B. Askari, M. Mirzaei, V. Abadi and M. Mirhabibi, American Journal of optics and Photonics, 2015, 3, 94-113.
[5]. I. Norris, Synthesis and Characterisation of Chiral Conducting Polymers, A Thesis presented to the Department of Chemistry University of Wollongong, 1999, pp. 1-15.
[6]. P.N. Ciesielskia, F.M. Hijazib, A.M. Scott, C.J. Faulkner, L.Beard, K. Emmett, S.J. Rosenthal, D. Cliffel, G.K. Jennings, 2010,  3047–3053.
[7]. O. Yehezkeli,, R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, I. Willner, Nature communicat., 2012.
[8]. Wohlgemuth J.H., Narayanan S. Twenty Second IEEE Photovoltaic Specialists Conference. 1991, 1, 273-277.
[9]. "Publications, Presentations, and News Database: Cadmium Telluride". National Renewable Energy Laboratory.
[10]. K. Zweibel, J. Mason, V. Fthenakis, "A Solar Grand Plan", Scientific American, Jan 2008.
[11]. Further mention of cost competitiveness: Scientific American, April 2008.
[12]. J. Peng, L. Lu, H. Yang, Renewable and Sustainable Energy Reviews, 2013, 19, 255–274.
[13]. V. Fthenakis, H.C. Kim, Renewable and Sustainable Energy Reviews, 2010, 14, 2039–2048.
[14]. M.J.  de Wild-Scholten, Solar Energy Mater. Solar Cells, 2013, 119, 296–305.
[15]. Fthenakis, Vasilis M. (2004). Archived from the original on 23 September 2014.
[16]. Werner, Jürgen H. (2 November 2011). Archived from the original (PDF) on 23 September 2014. Retrieved 23 September 2014.
[17]. Water Solubility of Cadmium Telluride in a Glass-to-Glass Sealed PV Module, Vitreous State Laboratory, and AMELIO Solar, Inc. 2011.
[18]. H. Trabish, The Lowdown on the Safety of First Solar's CdTe Thin Film, March 19, 2012
[19]. R. Mullins, Cadmium: The Dark Side of Thin-Film, September 25, 2008
[20]. Supply Constraints Analysis, National Renewable Energy Laboratory
[21]. Fraunhofer ISE Photovoltaics Report, July 28, 2014, 18-19.
[23]. (2014. Retrieved 7 October 2014.
[24]. Fraunhofer ISE and NREL (January 2015). Retrieved 25 April 2015.
[25]. "DOE Solar Energy Technologies Program Peer Review" (PDF). U.S. department of energy 2009. Retrieved 10 February 2011.
[26]. Wan, Haiying "Dye Sensitized Solar Cells", University of Alabama Department of Chemistry, p. 3
[27]. Dye-Sensitized vs. Thin Film Solar Cells, European Institute for Energy Research, 30 June 2006.
[28]. H. Tributsch, Coordinat. Chem. Rev., 2004, 248, 1511.
[29]. S.J. Moss, A. Ledwith, The Chemistry of the Semiconductor Industry, Springer, 1987.
[30]. D.J. Milliron, I. Gur, A.P. Alivisatos, Hybrid Organic–Nanocrystal Solar Cells. MRS Bulletin, 2005, 30, 41–44.
[31]. S.E. Shaheen, D.S. Ginley, G.E. Jabbour, Organic–Based Photovoltaics. MRS Bulletin, 2005, 30, 10.
[32]. B.R. Saunders, M.L. Turner, Advances in Colloid and Interface Science, 2008, 138, 1–23.
[33]. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Synthetic Metals, 1993, 59, 333–352.
[34]. D.S. Ginger, N.C. Greenham, Physical Review B, 1999, 59,624–629.
[35]. P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Advanced Materials, 2008, 20, 3516–3520.
[36]. M.G. Debije, P.P.C Verbunt, P.J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B.C. Rowan, B. S. Richards, T.L. Hoeks, Applied Optics, 2011, 50, 163-169.
[37]. M.G. Debije, P.P.C. Verbunt, B.C Rowan, B.S Richards, T.L Hoeks. Applied Optics, 2008, 47, 6763-6768,.
[38]. R. Reisfeld, S. Neuman, Nature, 1978, 274, 144–145.
[39]. R. Reisfeld, Y. Kalisky, Nature, 1980, 283, 281–282.
[40]. A. Nwanya, F. Ezema, P. Ejikeme, International Journal of the Physical Sciences, 2011, 6, 5190–5201.
[41]. Ö. Birel, An overvıew on the some phenotıazıne derıvatıve molecules used ın organıc dye-sensıtızed solar cells. Electronic Journal of Vocational Colleges, 2015.
[42]. M. Xie, J. Wang, J. Ren, L. Hao, F.Q. Bai, Q.J. Pan, Org. Electron., 2015, 26, 164–175.
[43]. P.A. Angaridis, T. Lazarides, A.C. Coutsolelos, Polyhedron, 2014, 82, 19–32.
[44]. J. Gong, J. Liang, K. Sumathy, RenewSust Energ Rev, 2012, 16, 5848–5860.
[45]. S. Shalini, R.B. Prabhu, S. Prasanna, T.K. Mallick, S. Senthilarasu, Renew. Sust. Energ. Rev., 2015, 51, 1306–1325.
[46]. N. Zhang, B. Zhang, J. Yan, X. Xue, X. Peng, Y. Li, Renew Energy, 2015, 77, 579–585
[47]. C. Grätzel, S.M. Zakeeruddin, Materials Today, 2013, 16, 11–18.
[48]. Z. Zeng, B. Zhang, C. Li, X. Peng, X.  Liu, S. Meng, Dyes Pigments, 2014, 100, 278–285.
[49]. D. Arteaga, R. Cotta, A. Ortiz, B. Insuasty, N. Martin, Echegoyen L, Dyes Pigments, 2015, 112, 127–137.
[50]. W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley,  Coord. Chem. Rev., 2004, 248, 1363–1379.
[51]. J. Lu, S. Liu, Y. Shen, J. Xu, Y. Cheng, M. Wang,  Electrochim. Acta., 2015, 179, 187–196
[52]. Sengupta D, Das P, Mondal B, Mukherjee K () Renew Sust Energ Rev, 2016, 60, 356–376.
[53]. F.T. Kong, S.Y. Dai, K.J. Wang Advances in Opto Electronics, 2007.
[54]. a) G. de la Torre, C.G. Claessens, T. Torres, Chem. Commun. 2007, 2000–2015; b) J. Mack, N. Kobayashi, Chem. Rev., 2011,111, 281–321; c) C.G. Claessens, U. Hahn, T. Torres, Chem. Rec. 2008, 8, 75–97.
[55]. a)M.V. Martínez-Díaz, T. Torres, Handbook of Porphyrin Science (Eds.: K. M. Kadish, K.M. Smith, R. Guilard), Academic Press, Singapore, 2010, vol. 10, pp. 141–181; b) M.V. Martínez- Díaz, G. de la Torre, T. Torres, Chem. Commun. 2010, 46, 7090–7108; c) M.V. Martínez-Díaz, M. Ince, T. Torres, Monatsh. Chem. 2011, 142, 699–707.
[56]. a) V. Velkannan, Curr. Sci. 2012, 102, 991–1000; b) M.G. Walter, A.B. Rudine, C.C. Wamser, J. Porphyrins Phthalocyanines, 2010, 14, 759–792.
[57]. a) M.K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil, G. Schneider, A. Hirth, N. Trombach, J. Porphyrins Phthalocyanines 1999, 3, 230–237; b) J. He, G. Benkö, F. Korodi, T. Polivka, R. Lomoth, B. Åkermark, L. Sun, A. Hagfeldt, V. Sundstrom, J. Am. Chem. Soc. 2002, 124, 4922–4932.
[58]. J.J. Cid, M. Garcia-Iglesias, J.H. Yum, A. Forneli, J. Albero, E. Martinez-Ferrero, P. Vazquez, M. Gratzel, M.K. Nazeeruddin, E. Palomares, T. Torres. Chem. Eur. J., 2009, 15, 5130.
[59]. N. Nwahara, J. Britton, T. Nyokong. J. Coord. Chem., 2017, 70, 1601.
[60]. H. Karaca. J. Organomet. Chem., 2016, 822, 39.
[61]. G. Martin, M.V. Martinez-Diaz, G. de la Torre, I. Ledoux, J. Zyss, F. Agullo-Lopez, T.Torres. Synth. Met., 2003, 139, 95.
[62]. H. Karaca, B. Çayeğil, S. Sezer. Synth. Met., 2016, 215, 134.
[63]. C.L. Wu, Y. Chen. Opt. Mater., 2017, 69, 38.
[64]. J.F. Van Der Pol, E. Neeleman, J.W. Zwikker, R.J.M. Nolte, W. Drenth, J. Aerts, R.Visser, S.J. Picken. Liq. Cryst., 1989, 61, 557.
[65]. H. Karaca, S. Sezer, Ş. Özalp–Yaman, C. Tanyeli. Polyhedron, 2014, 72, 147.
[66]. A. Hagfeldt, G. Boschloo, L.C.L. Kloo, H. Pettersson. Chem. Rev., 2010, 110, 6595.
[67]. X. Zhang, Q. Chen, H. Sun, T. Pan, G. Hu, R. Ma, Spectrochim Acta A Mol Biomol Spectrosc, 2014, 118, 564–571
[65]. D. Daphnomili, G. Sharma, S. Biswas, K.J. Thomas, A. Coutsolelos, J Photochem Photobiol A Chem, 2013, 253, 88–96
[66]. J. Mikroyannidis, G. Charalambidis, A. Coutsolelos, P. Balraju, G. Sharma, J Power Sources, 2011, 196, 6622–6628.
[67]. V.K. Narra, H. Ullah, V.K. Singh, L. Giribabu, S. Senthilarasu, S. Z. Karazhanov, 2015, 100, 313–320.
[68]. B. Chen, L. Sun, Y.S. Xie, Chin. Chem. Lett., 2015, 26, 899–904
[69]. C. Chitpakdee, S. Namuangruk, K. Suttisintong, S. Jungsuttiwong, T. Keawin, T. Sudyoadsuk, Dyes Pigments, 2015, 118, 64–75.
[70]. W.  Zhou, B.  Zhao, P. Shen, S. Jiang, H. Huang, L. Deng, Dyes Pigments, 2011, 91, 404–412
[71]. G. Sharma, G. Zervaki, P. Angaridis, A. Vatikioti, K. Gupta, T. Gayathri, Org Electron, 2014, 15, 1324–1337.
[72]. A. Shalabi, A. El Mahdy, H. Taha, K. Soliman, J Phys Chem Solids, 2015, 76, 22–33
[73]. G.D. Sharma, P.A. Angaridis, S. Pipou, G.E. Zervaki, V. Nikolaou, R. Misra, Org Electron, 2015, 25, 295–307.
[74]. K. Sirithip, S. Morada, S, Namuangruk, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk, Tetrahedron Lett, 2013, 54, 2435–2439.
[75]. M.S.A. Alvarado, Novel porphyrin for DSSC and BHJ solar cells, 2015.
[76]. C.R. Zhang, L.H. Han, J.W. Zhe, N.Z. Jin, Y.L. Shen, J.J. Gong, Computational and Theoretical Chemistry, 2014, 1039, 62–70.
[77]. M.P. Balanay, C.V.P. Dipaling, S.H. Lee, D.H. Kim, K.H. Lee, Sol Energy Mater Sol Cells, 2007, 91, 1775–1781.