CiteScore: 4.9     h-index: 21

Document Type : Review Article

Authors

1 Department of Pharmacy, Banasthali University, Banasthali (Rajasthan), India -304 022.

2 Associate Professor in Chemistry, Lovely Professional University, Jalandhar (Punjab), India-144 411.

10.29088/SAMI/AJCA.2019.2.94104

Abstract

Microwave is a convenient source of heating for organic synthesis. The heating is instantaneous and very specific. Nowadays Microwave assisted organic synthesis may consider all the previously heated reaction by this technique. The benefits of this organic synthesis by microwave increasingly making this technique more established worldwide. The various organic molecules may be quickly, efficiently, cleanly as well as economically synthesized by this technique. This article is mainly focusing on the importance of organic synthesis by microwave heating.

Graphical Abstract

Importance of Microwave Heating In Organic Synthesis

Keywords

Main Subjects

[1]. P.T. Anastas, J.C. Warner. Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998, p 85.
[2]. A.S., Grewal, K. Kumar, S. Redhu, S. Bhardwaj, Int. Res. J. Pharm. App. Sci., 2013, 3, 278-285.
[3]. P. Lidstrom, T. Jason, W. Bernard, W. Jacob, Tetrahedron, 2001, 37, 9223.
[4]. M. Lancaster. Green Chemistry: An Introductory Text, The Royal Society of Chemistry, London, 2002, p 176.
[5]. M. Kidwai, R. Venkataraman, B. Dave, Green Chem., 2001, 3, 278-279.
[6]. R.S. Varma, R.K. Saini, R. Dahiya, Tetrahedron Lett., 1997, 38, 7823-7824.
[7]. A. Loupy, Microwaves in Organic Synthesis, Wiley-VCH,Weinheim, 2002, p 68.
[8]. P. Lidstrom, J. Tierney, B. Wathey, Tetrahedron, 2001, 57, 7764.
[9]. S. Ravichandran, K. Subramani, R. Arun Kumar, Int. J. Chem. Sci., 2009, 7, 993.
[10]. S. Ravichandran, Synth. Commun., 2001, 31, 2059-2062.
[11]. S. Ravichandran, Synth. Commun., 2001, 31, 2185-2188.
[12]. S. Rashmi, Resonance, 2000, 77, 67-69.
[13]. R.S. Varma, Tetrahedron, 2002, 58, 1235-1255.
[14]. D.D. Artman, A.W. Grubbs, R.M. Williams, J. Amer. Chem. Soc., 2007, 129, 6336-6342.
[15]. S. Ravichandran, K. Subramani, R. Arun Kumar, Int. J. Chem. Sci., 2008, 6, 1800.
[16]. C. Zhang, L. Liao, S. Gong, Green Chem., 2007, 9, 303-314.
[17]. S. Sinwell, H. Ritter, Aus. J. Chem., 2007, 60, 729.
[18]. R.A. Sheldon, I. Arends, U. Hanefeld, Green Chemistry and Catalysis, Wiley, Wienheim, 2007, 1, p 18.
[19]. P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 2000, 2, p 124.
[20]. M. Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry, Cambridge, 2010, 1, p 58.
[21]. U.J. Joshi, K.M. Gokhale, A.P. Kanitkar, Indian J. Pharm. Edu. Res., 2011, 45, 168.
[22]. J.H. Clark, D.J. Macquarrie, Handbook of Green Chemistry and Technology, Wiley, 2002, 10.
[23]. S. Ravichandran, E. Karthikeyan, Int. J. Chem. Tech. Res., 2011, 3, 466-470.
[24]. J.L. Krstenansky, I. Cotterill, Curr Opin Drug Discov Devel, 2000, 3, 454-461.
[25]. B.S. Sekhon, Int. J. PharmTech. Res., 2010, 2, 827-833.
[26]. H. Rajak, P. Mishra, J. Sci. Ind. Res., 2004, 63, 641.
[27]. B. Wathey, J. Tierney, P. Lidström, J. Westman, Drug Discov Today, 2002, 7, 373-380.
[28]. P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 2001, 57, 9225-9283.
[29]. C. Gabriel, Gabriel, E.H. Grant, Chem. Soc. Rev., 1998, 27, 213.
[30]. C.R. Strauss, R.W. Trainor, Aust. J. Chem., 1995, 48, 1665-1692.
[31]. F. Langa, P. Cruz, A. Hoz, Contemp Org Synth, 1997, 4, 373-386.
[32]. P. Lidström, J. Westman, A. Lewis, Comb. Chem., 2002, 5, 441.
[33]. O. Algul, A. Kaessler, Y. Apcin, J. Jose, Molecules, 2008, 13, 736-748.
[34]. M.J. Collin, Future Med. Chem, 2010, 2, 151-155.
[35]. M. Larhed, A. Hallberg, Drug Discov. Today, 2001, 6, 406-416.
[36]. A. Lew, P.O. Krutzik, M.E. Hart, A.R. Chamberlin, J. Comb. Chem., 2002, 4, 95-150.
[37]. N.S. Wilson, C.R. Sarko, G.P. Roth, Org. Proc. Res. Dev., 2004, 8, 535-538.
[38]. S.V. Ley, I.R. Baxendale, Nat. Rev. Drug. Discov., 2002, 1, 573-586.
[39]. M. Gaba, N. Dhingra, Indian J. Pharm. Edu. Res., 2011, 45, 175.
[40]. I. Montes, D. Sanabria, M. García, J. Fajardo, J. Chem. Edu., 2006, 83, 628.
[41]. D. Bogda, J. Pielichowski, A. Borona, Synlett, 1996, 873-874.
[42]. V. Chakraborty, M. Bordoloi, J. Chem. Res. (S), 1999, 118–122.
[43]. S. Ravichandran, E. Karthikeyan, Int. J.  ChemTech. Res., 2011, 3, 466-470.
[44]. R. Boscencu, Molecules, 2012, 17, 5592-5603.
[45]. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. Engl., 2011, 50, 11312.
[46]. K.J. Sreeram, M. Nidhin, B.U. Nair, Material Sci, 2008, 31, 937-942.
[47]. V. Polshettiwar, M.N. Nadagouda, R.S.Varma, Aust. J. Chem., 2009, 62, 16.
[48]. M. Gupta, B.P. Wakhloo, Arkivoc, 2007, 15,94–98.
[49]. Z. ZJiang, Z. Feng, X. Shen, Chin. Chem. Lett., 2001, 12, 551.
[50]. J. Jacob, Int. J. Chem., 2012, 4, 29.
[51]. S.L. Petersen, A.P. Tofteng, L.Malik, K.J. Jensen, Chem. Soc. Rev., 2012, 41, 1826.
[52]. R. Deng, Y.  Wang, Y. Jiang, Synth. Commun., 1994, 24, 111-115.
[53]. C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, P.M. Mingos, Chem. Soc. Rev., 1998, 27, 213-224.
[54]. M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A. Ghumman, Eur. J., 2012, 18, 12628–12632.
[55]. J. Kou, R.S. Varma, ChemSusChem., 20125, 2435–2441.
[56]. M.A. Surat, S. Jauhari, K.R. Desai, Indian J. Pharm. Edu. Res., 2012, 4, 645.
[57]. Z. Chemat-Djenni, B. Hamada, F. Chemat, Molecules, 2007, 12, 1399.
[58]. R.S. Varma, K.P. Naicker, Tetrahedron Lett., 1999, 40, 6177-6180.
[59]. J. Jacob, Int. J. Chem., 2012, 4, 29-43.
[60]. A. Madhavi, J. Smita, K.R. Desai, Archiv. Appl. Sci. Res., 2012, 4, 645-661.