CiteScore: 4.9     h-index: 21

Document Type : Original Research Article


1 Yaoung Researchers & Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran.

2 Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.



The adsorption features of amino functionalized superparamagnetic iron oxide nanoparticle/SiO2 for selective removal of arsenic in water is studied. Amino functionalized superparamagnetic iron oxide nanoparticle/SiO2 is synthesized and characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and electron microscope (SEM). FTIR shows amine group successfully attached to nanoparticle. XRD-diffraction pattern show that the magnetic phase of superparamagnetic nanoparticle is magnetite by inverse spinel crystal structure. SEM image was used to study the morphology of superparamagnetic nanoparticle. The adsorption capability of the nanoparticle was examined in batch system. The nanoparticle was used for removal of arsenic in aqueous media. Adsorption experimental data showed that the adsorption of arsenic on the nanoparticle is depended on pH and contact time.

Graphical Abstract

Adsorptive Removal of Arsenic from Aqueous Solutions Using Amino Functionalized Super paramagnetic Iron Oxide Nanoparticle/SiO2


Main Subjects

[1]. E. Terlecka, Environ. Monit.Assess., 2005, 107, 259-284.
[2]. C.J. Moretti, K.P. Henke, C.A. Wentz, Particul. Sci. Technol., 1988, 6, 393-404.
[3]. B. An, Q. Liang, D. Zhao, Water Res., 2011, 45, 1961–1972.
[4]. B.K. Mandal, K.T. Suzuki, Talanta, 2002, 58, 201–235.
[5]. A.B. Shams, S. Tiantian,  H. Yunjun, X. Jiang, X. Xinhua, CLEAN – Soil, Air, Water, 2015, 43, 13–26.
[6]. N. Badr, K.M. Al-Qahtani, Environ. Monit. Assess., 2013, 185, 9669-9681.
[7]. W. Yang, T. Kan, W. Chen, M.B. Tomson, Water Res., 2010, 44, 5693–5701.
[8]. C.T. Yavuz, J.T. Mayo, C. Suchecki, J. Wang, A.Z. Ellsworth, H. Dcouto, E. Quevedo, A. Prakash, L. Gonzalez, C. Nguyen,C. Kelty, V.L. Colvin, Environ. Geochem. Health., 2010, 32, 327–334.  
[9]. Y. Jeong, M. Fan, S. Singh, C.L. Chuang, B. Saha, J. Hans van Leeuwen, Chem. Eng. Proces., 2007, 46, 1030–1039.
[10].  J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, D. J. Colloid Interface Sci., 2010, 349, 293-297.
[11]. Y.F. Huang, Y.F. Wang, X.P. Yan, Environ. Sci. Technol., 2010, 44, 7908-7912.
[12]. V. Chandra, J. Park, Y.Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, ACS Nano, 2010, 4, 3979-3986.
[13]. A. Farmany, M. M. Shirmohammadi, S. Kazemi, M. Hatami, S. S. Mortazavi.  Desalin. Water Treat., 2016, 9, 57, 27355-27362.
[14]. A.M. Ahmed, A.E. Ali, A.H. Ghazy, Adv. J. Chem. A, 2019, 2, 79-93.
[15]. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M. Nakamura, H.E. Toma, J. Magnet. Magnet. Mater., 2004, 279, 210-216.
[16]. T.Z. Yang, C.M. Shen, Z.A. Li, H.R. Zhang, C.W. Xiao, S.T. Chen, Z.C. Xu, D.X. Shi, J.Q. Li, H.J. Gao, J. Phys. Chem. B, 2005, 109, 23233-23236.
[17]. B.D. Cullity, Elements of X-ray Diffraction, Reading Mass: Addison-Wesley, 1967.
[18]. S. Brunauer, P.H. Emmett, E. Teller. J. Am. Chem. Soc., 1938, 60, 309-319.
[19]. K.S. Walton, R.Q. Snurr. J. Am. Chem. Soc., 2007, 129, 8552-8556.
[20]. M. Ahmaruzzaman, S., L. Gayatri, Chem. Eng. J., 2010, 158, 173–180.
[21]. S.S. Mortazavi, A. Farmany, J. Water Supply: Res. Technol. AQUA, 2016, 65, 37-42.
[22]. A. Farmany, S. S. Mortazavi, H. Mahdavi, J. Magnet. Magnet. Mater.,2016, 416, 75-80.
[23]. A. Penkova, J.M. Martínez  Blanes, S.A. Cruz, M.A. Centeno, K. Hadjiivanov, J.A. Odriozola, Micro.  Mesop. Mater., 2009, 117,  530–534.
[24]. M. Rosenholm, M. Lindén, J. Control. Releas., 2008, 128, 57-164.
[25]. H. Freundlich, H.S. Hatfield, Colloid and Capillary Chemistry, Methuen And Co. LTd; London, 1926, p. 993.
[26]. H. Freundlich, Z. Phy. Chem., 1907, 57, 385–470.
[27]. C. Namasivayam, R.T. Yamuna, Chemosphere, 1995, 30, 561-578.