CiteScore: 5.0     h-index: 22

Document Type : Original Research Article

Authors

1 Inorganic Materials Research Laboratory, Department of Pure & Applied Chemistry, University of Calabar, Nigeria

2 Department of Chemistry, Federal University of Petroleum Resources, Effurun, Nigeria

10.33945/SAMI/AJCA.2019.2.234244

Abstract

Three isostructural metal-organic framework materials (MOFs) formulated as M[(HBTC)(H2O)]ˑH2O(M = Cu for 1, Zn for 2 and Ca for 3) constructed with 1, 3, 5-benzenetricarboxylate (BTC) were synthesised under hydro/solvothermal conditions. The three compounds were characterised on the basis of infrared and UV-Vis spectroscopy and the structure of 3 elucidated with the help of single-crystal x-ray crystallography. The UV-Vis spectrum of 1 exhibited a unique band at 511 nm. In the region 520 – 534 nm, the band splits into two moderately intense peaks at 527 and 531 nm. These absorption peaks along with other bands at 629 and 638 nm were assigned to d-d transitions of the copper (II) ion with distorted square planar geometry. The infrared spectra of the three compounds revealed that the ligand, BTC anion coordinated in a chelating and / or bridging mode to the metal center. The presence of absorption bands at 1699 cm-1 in 1 and 2, (1681 cm-1 in 3) can be attributed to protonated HBTC for 1-3. Single-crystal X-ray crystallographic studies of compound 3 revealed well-ordered structure with BTC ligand linking the individual chains to form a network structure. On heating Cu(HBTC)(H2O)ˑH2O up to 400oC, a copper-oxide embedded in carbon matrix was obtained with uniform particles of 10 -100 nm size.

Graphical Abstract

Metal-organic frameworks as precursor for metal oxide nanostructures Part I: MOF-derived copper oxide embedded in carbon matrix

Keywords

Main Subjects

[1]. M. Fernández-Garcia, J.A. Rodriguez, and Encyclopedia of Inorganic and   Bioinorganic Chemistry: Metal Oxide        Nanoparticles; John Wiley & Sons, Ltd: New York, NY, USA. 2011, pp. 1-3.
[2]. Y. Teow, P.V. Asharani, M.P. Hande, S. Valiyaveettil, Chem. Communic., 2011, 47, 7025–7038.
[3]. C. Noguera.  Physics and chemistry at oxide surfaces; Cambridge University Press, Cambridge, UK, 1996.
[4]. H.H. Kung. Transition Metal Oxides: Surface Chemistry and Catalysis; Elsevier, Amsterdam, 1989.
[5]. V.E. Henrich, P.A. Cox. The surface chemistry of metal oxides; Cambridge University Press, Cambridge, UK, 1994.
[6]. J.A. Rodríguez, M. Fernández-García, Synthesis, Properties and Applications of Oxide Nanoparticles. Wiley, New Jersey, 2007.
[7]. H. Gleiter. Nanostruct. Mater., 1995, 6, 3-14.
[8]. M. Valden, X. Lai, D.W. Goodman. Science, 1998, 281, 1647.
[9]. J.A. Rodriguez, G. Liu, T. Jirsak, C. Z.  Hrbek, J.  Dvorak, A. Maiti. J. Am. Chem. Soc., 2002, 124, 5242-5250.
[10]. W. Bak, H. S. Kim, H. Chun, W. C.  Yoo. Chem. Commun., 2015, 51, 7238-7241.
[11]. M.S. Kang, D.H. Lee, K.J. Lee, H.S. Kim. J. Ahn, Y.E. Sung, W.C. Yoo. New J. Chem., 2018, 42, 18678-18689 DOI: 10.1039/CBNJ04919
[12]. X. Sun. J. Dispers. Sci. Technol., 2003, 24, 557–567.
[13]. S. Miyanaga, H. Yasuda, A. Hiwara, A. Nakumura, H. Sakai, J. Macromolecular Sci. Part. A Chem., 1990, 27, 1347–1361.
[14]. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi.  Nature, 1999, 402, 276-279.
[15]. X. Lin, I. Telepeni, A.J. Blake, A. Dailly, C.M. Brown, J.M. Simmons, M. Zoppi, G.S. Walker, K.M Thomas, T.J. Mays, P. Hubberstey, N.R.        Champness,       M. Schroder.  J. Am. Chem. Soc., 2009, 131, 2159 -2171.
[16]. J.R. Li, R.J. Kuppler, H.C. Zhou. Chem. Soc. Rev. 2009, 38, 1477–1504.
[17]. J.R.  Li, J. Sculley, H.C. Zhou, Chem. Rev. 2012, 112, 869–932.
[18]. B.E. Inah, A.A. Ayi, A. Adhikary.  Acta Cryst., 2017, E73, 246–249.
[19]. D. Zhang, Y. Yang, Z. Wu, G. Dong, Sensor. Actuators B: Chem., 2019, 283, 42-51
[20]. W. Yang, X. Li, Y. Li, R. Zhiu, H. Pang, Adv. Mater., 2019, 31, 1804740 https://doi.org/10.1002/adma.201804740.
[21]. X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J. M. Razal,  J. Liu. J. Mater. Chem. A, 2019, 7, 3815-3827.
[22]. J.J. Chen, Y.T.  Chen, D. S. Raja, Y.H. Kang, P.C. Tseng, C.H. Lin. Materials, 2015, 8, 5336-5347.
[23]. R. Das, P. Pachfule, R. Banerjee, P. Poddar, Nanoscale, 2012, 4, 591-599.
[24]. L. Hu, Q. Chen. Nanoscale, 2014, 6, 1236-1257.
[25]. J.K. Sun, Q. Xu. Energy & Environ. Sci., 2014, 7, 2071–2100.
[26] B. Liu, H.C. Zeng. J. Am. Chem. Soc., 2004, 126, 8124–8125.
[27]. B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc., 2008, 130, 5390–5391.
[28]. Y. Liu, Y. Chu, Y. Zhuo, M. Li, L.  Li, L. Dong. Cryst. Growth Des., 2007, 7, 467–470.
[29]. R. Pech, J. Pickardt. Acta Crystallogr.  C, 1988, 44,992-994.
[30]. S.S. Chui, S.M.  Lo, J.P., Charmant, A.G. Orpen, I.D. Williams, Science, 1999, 283. 1148–1150.
[31]. N. Stock, S. Biswas, Chem. Rev., 2012, 112, 933–969.
[32]. S.T. Meetk, J.A. Greathouse, M.D. Allendorf, Adv. Mater., 2011, 23, 249–267
[33]. S.L. James. Chem. Soc. Rev. 2003, 32, 276–288
[34]. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim,       Nature, 2003, 423,705-714.
[35] S. Kitagawa, R.  Kitaura, S.I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
[36]. F.A.A. Paz, J. Klinowski. Pure Appl. Chem., 2007, 79, 1097-1110.
[37]. S.S.Y. Chui, A. Siu, I.D. Williams. Acta Cryst. C., 1999, 55, 194-196.
[38]. M.I.H. Mohideen. Novel metal organic frameworks: synthesis, characterization and functions. A Thesis Submitted for the Degree of PhD at the University of St. Andrews: http://hdl.handle.net/10023/1892.
[39]. G.B.Deacon, R.J. Phillips, Coordi. Chem. Rev., 1980, 33, 227-250
[40]. N. Gupta, R. Gupta, S. Chandra, S.S. Bawa, Spectrochim. Acta A, 2005, 61, 1175-1180. 
[41]. R.K.Vakiti.  Hydro/Solvothermal Synthesis, Structures and Properties of Metal-Organic Frameworks Based on S-Block Metals. Masters Theses & Specialist Projects. Paper 1168. 2012.