CiteScore: 4.9     h-index: 21

Document Type : Original Research Article

Authors

1 School of Electrical Engineering, Islamic Azad University , Tehran, Iran

2 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

3 Chemistry and Processing Group, Chemistry and Materials Division, Niroo research Institute, Tehran, Iran

10.33945/SAMI/AJCA.2020.2.3

Abstract

In this study, a bacterial detection technique utilizing benefits of both positive and negative dielectrophoresis has been simulated with COMSOL Multiphysics. The two dimensional proposed model has six microelectrodes across microfluidic channel. Four of them were positioned on the upper side and the rest were positioned on the bottom side of the microchannel, which serve as a bacteria concentrator using negative dielectrophoresis and as a bacteria detector using positive dielectrophoresis, respectively. In this simulation, the target particle is Escherichia coli that was flowing into the microchannel and repelled under negative dielectrophoretic force exerted by the upper side microelectrodes, and were pushed toward the bottom side microelectrodes situated at the downstream. Finally, concentrated bacteria have been captured and detected by dielectrophoretic impedance measurement method. The numerical simulation proved that negative dielectrophoretic force could increase sensitivity with respect to the absence of the negative dielectrophoretic force and eventually, results represented that 80 percent of releasing E. coli bacteria trapped near bottom side microelectrodes.

Graphical Abstract

An Improved Escherichia Coli Bacterium Detection in Microchannel Based on Dielectrophoresis Impedance Measurements

Keywords

Main Subjects

[1] H.A. Pohl, J. Appl. Physics., 1951, 22, 869–871.
[2] I. POHL, Gambridge Monographs on Physics., 1978.
[3] H. Morgan, N.G. Green, Research Studies Press., 2003.
[4] M.P. Hughes, CRC press., 2002.
[5] T.B. Jones, T.B. Jones, Cambridge University Press., 2005.
[6] B.J. Kirby, Cambridge University Press., 2010.
[7] H.C. Chang, L.Y. Yeo, Cambridge University Press, 2010.
[8] R. Hamada, H. Takayama, Y. Shonishi, L. Mao, M. Nakano, J. Suehiro, Sensor. Actuat.. B-Chem., 2013, 181, 439–445.
[9] J. Voldman, Annu. Rev. Biomed. Eng., 2006, 8, 425–454.
[10] C.F. Gonzalez, V.T. Remcho, J. Chromatography A, 2005, 1079, 59–68.
[11] T.B. Jones, IEEE Eng. Med. Biol. Mag., 2003, 22, 33–42.
[12] L. Linbo, K. Chen, N. Xiang, Z. Ni. Electrophoresis, 2019, 6, 873–889.
[13] C. Siebman, O.D. Velev, V.I. Slaveykova. Biosensors, 2018, 8, 15.
[14] H.J. Kim, D.H. Kang, E. Lee, K. S. Hwang, H.J. Shin, J. Kim, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI International Society for Optics and Photonics., 2018, p 104840I.
[15] R.E. Fernandez, B.J. Sanghavi, V. Farmehini, J.L. Chávez, J. Hagen, N. Kelley-Loughnane, C.F. Chou, N.S. Swami, Electrochem. Commun., 2016, 72, 144–147.
[16] D. Cai, M. Xiao, P. Xu, Y.C. Xu, W. Du, Lab Chip, 2014, 14, 3917-3924.
[17] Y.L. Deng, M.Y. Kuo, Y.J. Juang, Biomicrofluid., 2014, 8, 064120.
[18] M. Fathollahzadeh et al., J. Solid State Electrochem., 2017, 22, 61–67.
[19] L. Fotouhi, M. Fatollahzadeh, M.M. Heravi, Int. J. Electrochem. Sci., 2012, 7, 3919–3928.
[20] M. Fathollahzadeh, M. Hosseini, B. Haghighi, M. Kolahdouz, M. Fathipour, Anal. Chim. Acta, 2016, 924, 99–105.
[21] H. Shayestehpour, K.N. Nazif, A. Soufi, M. Saidi, Scient. Iran. Transact. B, Mechan. Eng., 2018, 25, 186–195.
[22] M. Hosseini, M. Fathollahzadeh, M. Kolahdouz, A. Rostamian, M. Mahmoodian, A. Samaeian, H. H. Radamson, J. Solid State Electrochem., 2018, 22, 3161–3169.
[23] S. Sajed S, K. Vafaei,F. Arefi, M. Fathollahzadeh , M. Kolahdouz M, MA. Sadeghi , M. Neshat, Phys. Status Solidi A, 2019, 1800871.
[24] L. Wang, Small., 2015, 11, 3762–3767.
[25] I. Ermolina, J. Milner, H. Morgan, Electrophoresis, 2006, 27, 3939–3948.
[26] K. Yamada, T.G. Henares, K. Suzuki, D. Citterio, Angew. Chem. Int. Edit., 2015, 54, 5294–5310.
[27] Z. Yang, G. Xu, J. Reboud, S.A. Ali, G. Kaur, J. McGiven, N. Boby, P.K. Gupta, P. Chaudhuri, J.M. Cooper., ACS Sensors, 2018, 3, 403–409.
[28] A. Alfadhel, J. Ouyang, C.G. Mahajan, F. Forouzandeh, D. Cormier, D.A. Borkholder, Mater. Des., 2018, 150, 182–187.
[29] Z. Bagheri, B. Ranjbar, A. Azizi, H. Latifi, M.I. Zibaii, T. Tohidi Moghadam, Sci. Iran., 2018, 25, 3, 1783–1788.
[30] S. Hiroyuki, Y. Hiruta, D. Citterio, Analyst, 2019, 144, 1178–1186.
[31] N. Gan, L. Xie, K. Zhang, Y. Cao, F. Hu, T.Li, Sensor. Actuat. B-Chem., 2018, 272, 526–533.
[32] K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar zadeh, Bio. Bioelectron., 2011, 26, 1800–1814.
[33] Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O'Connel, M. Krihak ., Anal. chem., 2001, 73, 1549–1559.
[34] P.R. Gascoyne, J. Vykoukal, Electrophoresis., 2002, 23, 1973-1983.
[35] B.H. Lapizco‐Encinas, M. Rito‐Palomares, Electrophoresis., 2007, 28, 4521–4538.
[36] J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, M. Hara, J. Electrostatics., 2003, 57, 157–168.
[37] C. Quinn, G. Archer, W. Betts, J. O'Neill, Lett. Appl. Microbiol., 1996, 22, 224–228.
[38] R. Hölzel, J. Electrostatics., 2002, 56, 435–447.
[39] D.J. Bakewell, H. Morgan, IEEE Transact. Nanobiosci., 2006, 5, 1–8.
[40] J. Suehiro, T. Hatano, M. Shutou, M. Hara, Sensor. Actuat. B-Chem., 2005, 109, 209–215.
[41] M. Nakano, Z. Ding, J. Suehiro, Japan. J. Appl. Phys., 2015, 55, 017001.
[42] J. Chung, Y. Chen, S.J. Kim, Sensor. Actuators B: Chem., 2018, 266, 106–114.
[43] A. Sedaghat, A. Mohamadzadeh, Sci. Iran. Transact. B, Mechan. Eng., 2014, 21, 109–118.
[44] W.B. Betts, Trend. Food Sci. Technol., 1995, 6, 51–58.
[45] G.H. Markx, P.A. Dyda, R. Pethig, J. Biotechnol., 1996, 51, 175–180.
[46] R. Pethig, G.H. Markx, Trend. Biotechnol., 1997, 15, 426–432.
[47] W. Betts, A. Brown, J. Appl. Microbiol., 1998, 85, 201–213.
[48] J. Suehiro†, R.  Yatsunami, R. Hamada, M. Hara, J. Phys. D: Appl. Phys., 1999, 32, 2814–2820.
[49] G.H. Markx, Y. Huang, X.F. Zhou, R. Pethig, Microbiology., 1996, 51, 175–180.
[50] N. Manaresi A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, IEEE J. Solid-State Circuits., 2003, 38, 2297–2305.
[51] G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri, International Electron Devices Meeting, 2000. IEDM'00. Technical Digest. International., 2000, 415–418.
[52] M.P. Hughes, H. Morgan, F.J. Rixon, Biochim. Biophys. Acta (BBA)-General Subjects., 2002, 1571, 1–8.
[53] B. Yafouz, N.A. Kadri, F. Ibrahim, Sensors, 2013, 13, 9029–9046.
[54] G. Falkovich, Cambridge University Press., 2011.
[55] M. Madigan and J. Martinko, Sci. Elo. Espana., 2005.  
[56] Z.D. Blount, C.Z. Borland, R.E. Lenski, Proce. Natl. Acad. Sci., 2008, 105, 7899–7906.
[57] M.S. Donnenberg, Academic Press., 2002.