CiteScore: 5.0     h-index: 22

Document Type : Original Research Article

Authors

Department of Chemistry, University of Guilan, P.O. Box: 41335-19141, Rasht, Iran

Abstract

In this study, experimental tie-line data analysis was conducted for the ternary system (water+phosphoric acid+1-pentanol) at 278.2 K and 288.2 K and atmospheric pressure. The compositions of equilibrium phases were determined using the acid-base and the Karl Fisher titration methods and mass balance calculations. Reliability of the experimental data was investigated using the Othmer–Tobias and Hand equations. The UNIQUAC thermodynamic model was applied for correlation of the equilibrium tie-line points. The experimental tie-lines were satisfactorily regressed using the thermodynamic model (%rmsd=2.48). Distribution coefficients and separation factors were determined over the biphasic area. Separation factors were greater than one in all the investigated feeds at the studied temperatures that guarantees the successful separation process. The Kamlet-Taft parameters were applied for the LSER modeling of the obtained distribution coefficients and separation factors. The effect of temperature on extraction process was investigated by adding a modification term in Kamlet-Taft equation. The ternary system revealed good fittings with the modified LSER model. The results showed that, the temperature decrement had positive effect on the extraction ability of the 1-pentanol for separating phosphoric acid from aqueous solution.

Graphical Abstract

Measurement and Correlation of LLE Data for the Ternary System Water+Phosphoric Acid+1-Pentanol at 278.2 K and 288.2 K

Keywords

[1] P. Becker, Phosphates and phosphoric acid, raw materials, technology and economics of the wet process; 2nd Ed.; Marcel Dekker Inc.; New York, 1989, pp 37–64.
[2] S.V. Dorozhkin, Ind. Eng. Chem. Res., 1997, 36, 467–473.
[3]  J.F. McCullough, L.L. Frederick, J. Agric. Food Chem., 1976, 24, 180–187.
[4] J.M. Marco, M.I. Galan, J. Costa, J. Chem. Eng. Data, 1988, 33, 211–214.
[5]  M. Feki, M. Fourati, M.M. Chaabouni, H.F. Ayedi, Can. J. Chem. Eng., 1994, 72, 939–944.
[6] S. Stenstrom, S. Wingefors, Can. J. Chem. Eng., 1988, 66, 248–257.
[8] R. Dhouib-Sahnoun, M. Feki, H.F. Ayedi, J. Chem. Eng. Data, 2002, 47, 861–866.
[9]  F. Ruiz, M.I. Galan, N. Boluda, Fluid Phase Equilib., 1998, 146, 175–185.
[10] K. Bahrpaima, A.R. Bijanzadeh, M. Behzadi, Phys. Chem. Res., 2017, 5, 125–134.
[11] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani, F. Borji Peydeh, S.L. Seyed Saadat, S. Ahmadifar, Phys. Chem. Res., 2016, 4, 489–505.
[12] S. Shekarsaraee, B. Kolachahi Sabet, F. Moradi, M. Kazemi, Y. Parvandi, Phys. Chem. Res., 2019, 7, 425–434.
[13] S. Shekarsaraee, Phys. Chem. Res., 2016, 4, 507–518.
[14] F. Ruiz, A. Marcilla, A. Ma Ancheta, C. Rico, Solvent Extr. Ion Exc., 1986, 4, 771–787.
[15] F. Ruiz, A. Marcilla, A. Ma Ancheta, C. Rico, Solvent Extr. Ion Exch., 1986, 4, 789–802.
[16] F. Ruiz, J. Fernández, N. Boluda, AIChE J., 2004, 41, 185–189.
[17] A. Marcilla, F. Ruiz, J. Campos, M. Asensio, Solvent Extr. Ion Exch., 1989, 7, 211–221.
[18] C.H. Harrison, P. Roquero, J. Chem. Eng. Data, 2004, 49, 218–220.
[19] A. Gomez, F. Ruiz, J. Fernandez, E. Torregrosa, Ind. Eng. Chem. Res., 2001, 40, 892–897.
[20] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani, S. Shekarsaraee, H. Uslu, Fluid Phase Equilib., 2012, 316, 109–116.
[21] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani, S. Shekarsaraee, H. Uslu, J. Chem. Thermodyn., 2012, 53, 52–59.
[22] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani, S. Shekarsaraee, Fluid Phase Equilib., 2013, 337, 32–38.
[23] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani, S. Shekarsaraee, Thermochim. Acta, 2013, 558, 36–45.
[24] S. Shekarsaraee, J. Chem. Thermodyn., 2017, 104, 16–23.
[25] A. Ghanadzadeh Gilani, A. Najafgholizadeh, B. Mohammadi Khanghah, M. Nasouri Gazani, J. Mol. Liq., 2018, 268, 553–560.
[26] A. Ghanadzadeh Gilani, Nasouri Gazani, B. Mohammadi Khanghah, A. Najafgholizadeh, J. Chem. Thermodyn., 2018, 123, 51–61.
[27] D. Othmer, P. Tobias, Ind. Eng. Chem., 1942, 34, 693–696.
[28] D.B. Hand, J. Phys. Chem., 1930, 34, 1961–2000.
[29] D.S. Abrams, J.M. Prausnitz, AIChE J., 1975, 21, 116–128.
[30] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry; 3th Ed., Wiley VCH & Co., 2003; p 420 and pp 645–655.
[31] E. Scholz, Karl Fischer Titration; Springer Verlag: Heidelberg, 1984, pp 3–13.
[32] B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids; fifth ed., McGraw Hill: New York, 2001, pp. 8.75–8.81.
[33] J.M. Sørensen, T. Magnussen, P. Rasmussen, A. Fredenslund, Fluid Phase Equilib., 19792, 297–309.
[34] M.J. Kamlet, J.M. Abboud, M.H. Abraham, R.W. Taft, J. Org. Chem., 1983, 48, 2877–2887.
[35] H. Ghanadzadeh, A. Ghanadzadeh, S. Asgharzadeh, M. Moghadam, J. Chem. Thermodyn., 2012, 47, 288–294.